Advertisement

Neural Network Modeling of AChE Inhibition by New Carbazole-Bearing Oxazolones

  • Levent CavasEmail author
  • Gamze Topcam
  • Cevher Gundogdu-Hizliates
  • Yavuz Ergun
Original Research Article
  • 124 Downloads

Abstract

Acetylcholine esterase (AChE) is one of the targeted enzymes in the therapy of important neurodegenerative diseases such as Alzheimer’s disease. Many studies on carbazole- and oxazolone-based compounds have been conducted in the last decade due to the importance of these compounds. New carbazole-bearing oxazolones were synthesized from several carbazole aldehydes and p-nitrobenzoyl glycine as AChE inhibitors by the Erlenmeyer reaction in the present study. The inhibitory effects of three carbazole-bearing oxazolone derivatives on AChE were studied in vitro and the experimental results were modeled using artificial neural network (ANN). The developed ANN provided sufficient correlation between several dependent systems, including enzyme inhibition. The inhibition data for AChE were modeled by a two-layered ANN architecture. High correlation coefficients were observed between the experimental and predicted ANN results. Synthesized carbazole-bearing oxazolone derivatives inhibited AChE under in vitro conditions, and further research involving in vivo studies is recommended. An ANN may be a useful alternative modeling approach for enzyme inhibition.

Keywords

AchE inhibition Alzheimer’s disease Artificial neural network Carbazole-bearing oxazolones Enzyme inhibition Organic synthesis 

References

  1. 1.
    Voet D, Voet JG (2011) Biochemistry. Wiley, New YorkGoogle Scholar
  2. 2.
    Pohanka M (2011) Alzheimer’s disease and related neurodegenerative disorders: implication and counteracting of melatonin. J Appl Biomed 9:185–196.  https://doi.org/10.2478/v10136-011-0003-6 CrossRefGoogle Scholar
  3. 3.
    Calderón FH, Von Bernhardi R, De Ferrari G, Luza S, Aldunate R, Inestrosa NC (1998) Toxic effects of acetylcholinesterase on neuronal and glial-like cells in vitro. Mol Psychiatry 3:247–255CrossRefPubMedGoogle Scholar
  4. 4.
    Scacchi R, Ruggeri M, Corbo RM (2011) Variation of the butyrylcholinesterase (BChE) and acetylcholinesterase (AChE) genes in coronary artery disease. Clin Chim Acta 412:1341–1344.  https://doi.org/10.1016/j.cca.2011.03.033 CrossRefPubMedGoogle Scholar
  5. 5.
    De M, Corrêa C, Maldonado P, Da Rosa CS, Lunkes G, Lunkes DS, Kaizer RR, Ahmed M, Morsch VM, Pereira ME, Schetinger MR (2008) Oxidative stress and erythrocyte acetylcholinesterase (AChE) in hypertensive and ischemic patients of both acute and chronic stages. Biomed Pharmacother 62:317–324.  https://doi.org/10.1016/j.biopha.2007.10.002 CrossRefGoogle Scholar
  6. 6.
    Bolognesi ML, Cavalli A, Andrisano V, Bartolini M, Banzi R, Antonello A, Rosini M, Melchiorre C (2003) Design, synthesis and biological evaluation of ambenonium derivatives as AChE inhibitors. Farmaco 58:917–928.  https://doi.org/10.1016/S0014-827X(03)00150-2 CrossRefPubMedGoogle Scholar
  7. 7.
    Omran Z, Cailly T, Lescot E, De Santos JS, Agondanou JH, Lisowski V, Fabis F, Godard AM, Stiebing S, Flem G, Boulouard M, Dauphin F, Dallemagne P, Rault S (2005) Synthesis and biological evaluation as AChE inhibitors of new indanones and thiaindanones related to donepezil. Eur J Med Chem 40:1222–1245.  https://doi.org/10.1016/j.ejmech.2005.07.009 CrossRefPubMedGoogle Scholar
  8. 8.
    Sheng R, Lin X, Zhang J, Chol KS, Huang W, Yang B, He Q, Hu Y (2009) Design, synthesis and evaluation of flavonoid derivatives as potent AChE inhibitors. Bioorgan Med Chem 17:6692–6698.  https://doi.org/10.1016/j.bmc.2009.07.072 CrossRefGoogle Scholar
  9. 9.
    De Paula AAN, Martins JBL, Dos Santos ML, De Nascente LC, Romeiro LAS, Areas TF, Vieira KS, Gambôa NF, Castro NG, Gargano R (2009) New potential AChE inhibitor candidates. Eur J Med Chem 44:3754–3759.  https://doi.org/10.1016/j.ejmech.2009.03.045 CrossRefPubMedGoogle Scholar
  10. 10.
    Chen X, Xue LX, Ju CC, Wang KZ (2013) The effects of linear assembly of two carbazole groups on acid–base and DNA-binding properties of a ruthenium(II) complex. Spectrochim Acta A 111:196–203.  https://doi.org/10.1016/j.saa.2013.04.017 CrossRefGoogle Scholar
  11. 11.
    Adebajo AC, Ayoola OF, Iwalewa EO, Akindahunsi AA, Omisore NOA, Adewunmi CO, Adenowo TK (2006) Anti-trichomonal, biochemical and toxicological activities of methanolic extract and some carbazole alkaloids isolated from the leaves of Murraya koenigii growing in Nigeria. Phytomedicine 13:246–254.  https://doi.org/10.1016/j.phymed.2004.12.002 CrossRefPubMedGoogle Scholar
  12. 12.
    Kilbane JJ, Amrutha ID, Javaneh A, Kevin JK (2002) Isolation and characterization of Sphingomonas sp. GTIN11 capable of carbazole metabolism in petroleum. Biochem Biophys Res Commun 297:242–248.  https://doi.org/10.1016/S0006-291X(02)02183-6 CrossRefPubMedGoogle Scholar
  13. 13.
    Ozturk G, Feller KH, Dornbusch K, Timur S, Alp S, Ergun Y (2011) Development of fluorescent array based on sol-gel/chitosan encapsulated acetylcholinesterase and pH sensitive oxazol-5-one derivative. J Fluoresc 21:161–167.  https://doi.org/10.1007/s10895-010-0700-7 CrossRefPubMedGoogle Scholar
  14. 14.
    Yildirim N, Odaci G, Ozturk G, Alp S, Ergun Y, Dornbusch K, Feller K, Timur S (2011) Solgel encapsulated glucose oxidase arrays based on a pH sensitive fluorescent dye. Dyes Pigm 89:144–148.  https://doi.org/10.1016/j.dyepig.2010.10.003 CrossRefGoogle Scholar
  15. 15.
    Hamidian H, Tagizadeh R, Fozooni S, Abbasalipour V, Taheri A, Namjou M (2013) Synthesis of novel azo compounds containing 5(4H)-oxazolone ring as potent tyrosinase inhibitors. Bioorg Med Chem 21:2088–2092.  https://doi.org/10.1016/j.bmc.2013.01.014 CrossRefPubMedGoogle Scholar
  16. 16.
    Jahnke AC, Herter A, Dechert S, John M, Meyer F (2011) Oxazolone copper(I) complexes inspired by the methanobactin active site. Inorg Chim Acta 374:601–605.  https://doi.org/10.1016/j.ica.2011.03.070 CrossRefGoogle Scholar
  17. 17.
    Pereira ER, Sancelme M, Voldoire A, Prudhomme M (1997) Synthesis and antimicrobial activities of 3-N-substituted-4,5-bis (3 -indolyl)oxazo1-2 –ones. Bioorg Med Chem Lett 7:2503–2506CrossRefGoogle Scholar
  18. 18.
    Nolte T, Zadeh-Khorasani M, Safarov O, Rueff F, Gulberg V, Herbach N, Wollenberg A, Mueller T, Siebeck M, Wolf E, Gropp R (2013) Oxazolone and ethanol induce colitis in non-obese diabetic-severe combined immunodeficiency interleukin-2Rγnull mice engrafted with human peripheral blood mononuclear cells. Clin Exp Immunol 172:349–362.  https://doi.org/10.1111/cei.12057 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Fujii Y, Sengoku T (2013) Effects of the janus kinase inhibitor CP-690550 (Tofacitinib) in a rat model of oxazolone-induced chronic dermatitis. Pharmacology 91:207–213.  https://doi.org/10.1159/000347184 CrossRefPubMedGoogle Scholar
  20. 20.
    Christensen AD, Skov S, Haase C (2013) Local and systemic effects of co-stimulatory blockade using cytotoxic T lymphocyte antigen-4-immunoglobulin in dinitrofluorobenzene- and oxazolone-induced contact hypersensitivity in mice. Clin Exp Immunol 171:220–230.  https://doi.org/10.1111/cei.12005 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Soylemez S, Udum YA, Kesik M, Gundogdu Hizliates C, Ergun Y, Toppare L (2015) Electrochemical and optical properties of a conducting polymer and its use in a novel biosensor for the detection of cholesterol. Sens Actuators B 212:425–433.  https://doi.org/10.1016/j.snb.2015.02.045 CrossRefGoogle Scholar
  22. 22.
    Díaz JL, Villacampa B, López-Calahorra F, Velasco D (2002) Experimental and theoretical study of a new class of acceptor group in chromophores for nonlinear optics: 2-substituted 4-methylene-4H-oxazol-5-ones. Chem Mater 14:2240–2251.  https://doi.org/10.1021/cm011293d CrossRefGoogle Scholar
  23. 23.
    Díaz JL, Villacampa B, López-Calahorra F, Velasco D (2002) Synthesis of polyconjugated carbazolyl–oxazolones by a tandem hydrozirconation–Erlenmeyer reaction: study of their hyperpolarizability values. Tetrahedron Lett 43:4333–4337.  https://doi.org/10.1016/S0040-4039(02)00806-7 CrossRefGoogle Scholar
  24. 24.
    Grigoras M, Antonoaia NC (2005) Synthesis and characterization of some carbazole-based imine polymers. Eur Polym J 41:1079–1089.  https://doi.org/10.1016/j.eurpolymj.2004.11.019 CrossRefGoogle Scholar
  25. 25.
    Xu T, Lu R, Liu X, Chen P, Qiu X, Zhao Y (2008) Synthesis and characterization of subporphyrins with dendritic carbazole arms. Eur J Org Chem 2008:1065–1071.  https://doi.org/10.1002/ejoc.200700981 CrossRefGoogle Scholar
  26. 26.
    Gundogdu C, Topkaya D, Ozturk G, Alp S, Ergun Y (2010) Synthesis of novel carbazolyl-oxazolone derivatives and their spectroscopic properties. J Heterocycl Chem 47:1450–1453.  https://doi.org/10.1002/jhet.499 CrossRefGoogle Scholar
  27. 27.
    Hinton GH (1989) Connectionist learning procedures. Artif Intell 40:185–234CrossRefGoogle Scholar
  28. 28.
    Li Y, Rauth AM, Wu XY (2005) Prediction of kinetics of doxorubicin release from sulfopropyl dextran ion-exchange microspheres using artificial neural networks. Eur J Pharm Sci 24:401–410.  https://doi.org/10.1016/j.ejps.2004.12.005 CrossRefPubMedGoogle Scholar
  29. 29.
    Geeraerd AH, Herremans CH, Cenens C, Van Impe JF (1998) Application of artificial neural networks as a non-linear modular modeling technique to describe bacterial growth in chilled food products. Int J Food Microbiol 44:49–68CrossRefPubMedGoogle Scholar
  30. 30.
    Hajmeer MN, Basheer IA, Najjar YM (1997) Computational neural networks for predictive microbiology II. application to microbial growth. Int J Food Microbiol 34:51–66CrossRefPubMedGoogle Scholar
  31. 31.
    Lou W, Nakai S (2001) Application of artificial neural networks for predicting the thermal inactivation of bacteria: a combined effect of temperature, pH and water activity. Food Res Int 34:573–579.  https://doi.org/10.1016/S0963-9969(01)00074-6 CrossRefGoogle Scholar
  32. 32.
    Sun Y, Peng Y, Chen Y, Shukla AJ (2003) Application of artificial neural networks in the design of controlled release drug delivery systems. Adv Drug Del Rev 55:1201–1215.  https://doi.org/10.1016/S0169-409X(03)00119-4 CrossRefGoogle Scholar
  33. 33.
    Fernández M, Tundidor-Camba A, Caballero JJ (2005) Modeling of cyclin-dependent kinase inhibition by 1H-pyrazolo[3,4-d]pyrimidine derivatives using artificial neural network ensembles. Chem Inf Model 45:1884–1895.  https://doi.org/10.1021/ci050263i CrossRefGoogle Scholar
  34. 34.
    Bas D, Dudak FC, Boyaci IH (2007) Modeling and optimization III: reaction rate estimation using artificial neural network (ANN) without a kinetic model. J Food Eng 79:622–628.  https://doi.org/10.1016/j.jfoodeng.2006.02.021 CrossRefGoogle Scholar
  35. 35.
    Vigneswaran C, Ananthasubramanian M, Anbumani N (2012) Prediction and process optimization of bioscouring of organic cotton fabrics through specific mixed enzymatic system using artificial neural network (ANN). J Nat Fibers 9:1–22.  https://doi.org/10.1080/15440478.2012.651828 CrossRefGoogle Scholar
  36. 36.
    Swuec P, Barlow DJ (2012) Prediction of inhibitory activities of Hsp90 inhibitors. Bioorgan Med Chem 20:408–414.  https://doi.org/10.1016/j.bmc.2011.10.069 CrossRefGoogle Scholar
  37. 37.
    Bryjak J, Ciesielski K, Zbiciński I (2004) Modelling of glucoamylase thermal inactivation in the presence of starch by artificial neural network. J Biotechnol 114:177–185.  https://doi.org/10.1016/j.jbiotec.2004.07.003 CrossRefPubMedGoogle Scholar
  38. 38.
    Magaletta RL, Dicataldo SN, Liu D, Li HL, Borwankar RP, Martin MC (2010) In vitro method for predicting glycemic index of foods using simulated digestion and an artificial neural network. Cereal Chem 87:363–369.  https://doi.org/10.1094/CCHEM-87-4-0363 CrossRefGoogle Scholar
  39. 39.
    Patra JC, Chua BH (2011) Artificial neural network-based drug design for diabetes mellitus using flavonoids. J Comput Chem 32:555–567.  https://doi.org/10.1002/jcc.21641 CrossRefPubMedGoogle Scholar
  40. 40.
    Wang ZW, Duan HW, Hu CY (2009) Modelling the respiration rate of guava (Psidium guajava L.) fruit using enzyme kinetics, chemical kinetics and artificial neural network. Eur Food Res Technol 229:495–503.  https://doi.org/10.1007/s00217-009-1079-z CrossRefGoogle Scholar
  41. 41.
    Adnani A, Basri M, Chaibakhsh N, Abdul-Rahman MB, Salleh AB (2011) Artificial neural network analysis of lipase-catalyzed synthesis of sugar alcohol ester. Ind Crop Prod 33:42–48.  https://doi.org/10.1016/j.indcrop.2010.08.006 CrossRefGoogle Scholar
  42. 42.
    Abdul Rahman MB, Chaibakhsh N, Basri M, Salleh AB, Rahman RNZA (2009) Application of artificial neural network for yield prediction of lipase-catalyzed synthesis of dioctyl adipate. Appl Biochem Biotechnol 158:722–735.  https://doi.org/10.1007/s12010-008-8465-z CrossRefPubMedGoogle Scholar
  43. 43.
    Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharm 7:88–90.  https://doi.org/10.1016/0006-2952(61)90145-9 CrossRefPubMedGoogle Scholar
  44. 44.
    Galgani F, Bocquene G, Cadiou Y (1992) Evidence of variation in cholinesterase activity in fish along a pollution gradient in the North Sea. Mar Ecol Prog Ser 91:77–82CrossRefGoogle Scholar
  45. 45.
    Holth TF, Tollefsen KE (2012) Acetylcholine esterase inhibitors in effluents from oil production platforms in the North Sea. Aquat Toxicol 112:92–98.  https://doi.org/10.1016/j.aquatox.2011.10.019 CrossRefPubMedGoogle Scholar
  46. 46.
    Yetilmezsoy K, Demirel S (2008) Artificial neural network (ANN) approach for modeling of Pb(II) adsorption from aqueous solution by Antep pistachio (Pistacia Vera L.) shells. J Hazard Mater 153:1288–1300.  https://doi.org/10.1016/j.jhazmat.2007.09.092 CrossRefPubMedGoogle Scholar
  47. 47.
    Hizliates CG (2013) Synthesis of new carbazolyl oxazolone derivatives and studying spectroscopic properties. Dissertation, Dokuz Eylul UniversityGoogle Scholar
  48. 48.
    Gabrovska K, Marinova I, Godjevargova T, Portaccio M, Lepore M, Grano V, Diano N, Mita DG (2008) The influence of the support nature on the kinetics parameters, inhibition constants and reactivation of immobilized acetylcholinesterase. Int J Biol Macromol 43:339–345.  https://doi.org/10.1016/j.ijbiomac.2008.07.006 CrossRefPubMedGoogle Scholar
  49. 49.
    Thangsunan P, Kittiwachana S, Meepowpan P, Kungwan N, Prangkio P, Hannongbua S, Suree N (2016) Rapid activity prediction of HIV-1 integrase inhibitors: harnessing docking energetic components for empirical scoring by chemometric and artificial neural network approaches. J Comput Aided Mol Des 30:471–488.  https://doi.org/10.1007/s10822-016-9917-0 CrossRefPubMedGoogle Scholar
  50. 50.
    Huang KC, Li Y, Kuo CH, Twu YK, Shieh CJ (2016) Highly efficient synthesis of an emerging lipophilic antioxidant: 2-ethylhexyl ferulate. Molecules 21(478):1–11.  https://doi.org/10.3390/molecules21040478 Google Scholar
  51. 51.
    Ega SL, Kanamarlapudi RK, Muddada S, Rao MRN (2016) Statistical optimization of cellulase production from a new strain of Bacillus subtilis VS15 by central composite design and artificial neural network. Res J Biotech 11:18–29Google Scholar
  52. 52.
    Rahimpour F, Hatti-Kaul R, Mamo G (2016) Response surface methodology and artificial neural network modelling of an aqueous two-phase system for purification of a recombinant alkaline active xylanase. Process Biochem 51:452–462.  https://doi.org/10.1016/j.procbio.2015.12.018 CrossRefGoogle Scholar
  53. 53.
    Morales-Medina R, Perez-Galvez R, Guadix A, Guadix EM (2016) Artificial neuronal network modeling of the enzymatic hydrolysis of horse mackerel protein using protease mixtures. Biochem Eng J 105:364–370.  https://doi.org/10.1016/j.bej.2015.10.009 CrossRefGoogle Scholar
  54. 54.
    Dolatabadi Z, Rad AHE, Vahid F, Feizabad SHA, Estiri SH, Bakhshabadi H (2016) Modeling of the lycopene extraction from tomato pulps. Food Chem 190:968–973.  https://doi.org/10.1016/j.foodchem.2015.06.069 CrossRefPubMedGoogle Scholar
  55. 55.
    Li Z, Li Y, Sun L, Tang Y, Liu L, Zhu W (2015) Artificial neural network cascade identifies multi-P450 inhibitors in natural compounds. Peerj 21:e1524.  https://doi.org/10.7717/peerj.1524 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Levent Cavas
    • 1
    Email author
  • Gamze Topcam
    • 1
  • Cevher Gundogdu-Hizliates
    • 1
  • Yavuz Ergun
    • 1
  1. 1.Department of Chemistry, Faculty of ScienceDokuz Eylül UniversityİzmirTurkey

Personalised recommendations