Advertisement

Genome-Wide Assessment of Polygalacturonases-Like (PGL) Genes of Medicago truncatula, Sorghum bicolor, Vitis vinifera and Oryza sativa Using Comparative Genomics Approach

  • Gautam Anand
  • Sangeeta Yadav
  • Aiman Tanveer
  • Jeya Nasim
  • Nitish K. Singh
  • Amit K. Dubey
  • Dinesh Yadav
Original Research Article
  • 184 Downloads

Abstract

The polygalacturonases (PG) is one of the important members of pectin-degrading glycoside hydrolases of the family GH28. In plants, PG represents multigene families associated with diverse processes. In the present study, an attempt has been made to investigate the diversity of PG genes among monocots and dicots with respect to phylogeny, gene duplication and subcellular localization to get an insight into the evolutionary and functional attributes. The genome-wide assessment of Medicago truncatula, Vitis vinifera Sorghum bicolor, and Oryza sativa L. ssp. japonica genomes revealed 53, 49, 38 and 35 PG-like (PGL) genes, respectively. The predominance of glyco_hydro_28 domain, hydrophilic nature and genes with multiple introns were uniformly observed. The subcellular localization showed the presence of signal sequences targeting the secretory pathways. The phylogenetic tree constructed marked uniformity with three distinct clusters for each plant irrespective of the variability in the genome sizes. The site-specific selection pressure analysis based on K a/K s values showed predominance of purifying selection pressures among different groups identified in these plants. The functional divergence analysis revealed significant site-specific selective constraints. Results of site-specific selective pressure analysis throw light on the functional diversity of PGs in various plant processes and hence its constitutive nature. These findings are further strengthened by functional divergence analysis which reveals functionally diverse groups in all the four species representing monocots and dicots. The outcome of the present work could be utilized for deciphering the novel functions of PGs in plants.

Keywords

Polygalacturonases-like (PGL) genes Pectinases Phylogenetic tree Functional divergence Subcellular localization Genomics 

Notes

Acknowledgements

The financial support by Department of Science and Technology, Government of India, New Delhi, in the form of SERB Young Scientist Fellowship (SB/FT/LS-430/2012) to S. Yadav is thankfully acknowledged. GA would like to acknowledge Jawaharlal Nehru Memorial Fund for providing Jawaharlal Nehru Memorial Scholarship for doctoral studies. The authors acknowledge the infrastructural support from the Head, Department of Biotechnology, D.D.U. Gorakhpur University, Gorakhpur.

Supplementary material

12539_2017_230_MOESM1_ESM.docx (21 kb)
Supplementary material 1 (DOCX 22 kb)
12539_2017_230_MOESM2_ESM.docx (17 kb)
Supplementary material 2 (DOCX 17 kb)
12539_2017_230_MOESM3_ESM.docx (20 kb)
Supplementary material 3 (DOCX 21 kb)
12539_2017_230_MOESM4_ESM.docx (16 kb)
Supplementary material 4 (DOCX 17 kb)
12539_2017_230_MOESM5_ESM.docx (18 kb)
Supplementary material 5 (DOCX 19 kb)
12539_2017_230_MOESM6_ESM.docx (16 kb)
Supplementary material 6 (DOCX 16 kb)
12539_2017_230_MOESM7_ESM.docx (16 kb)
Supplementary material 7 (DOCX 17 kb)
12539_2017_230_MOESM8_ESM.docx (15 kb)
Supplementary material 8 (DOCX 16 kb)

References

  1. 1.
    Seneschal F, Wattier C, Rusterucci C, Pelloux J (2014) Homogalacturonan-modifying enzymes: structures, expression, and roles in plants. J Exp Bot 65(18):5125–5160CrossRefGoogle Scholar
  2. 2.
    Alkorta I, Garbisu C, Llama MJ, Serra JL (1998) Industrial applications of pectic enzymes: a review. Process Biochem 33(1):21–28CrossRefGoogle Scholar
  3. 3.
    Naidu GSN, Panda T (1998) Production of pectolytic enzymes—a review. Bioprocess Eng 19(5):355–361CrossRefGoogle Scholar
  4. 4.
    Lang C, Örnenburg HD (2000) Perspectives in the biological function and the technological application of polygalacturonases. Appl Microbiol Biotechnol 53(4):366–375CrossRefGoogle Scholar
  5. 5.
    Kashyap DR, Vohra PK, Chopra S, Tewari R (2001) Applications of pectinases in the commercial sector: a review. Biores Technol 77(3):215–227CrossRefGoogle Scholar
  6. 6.
    Hoondal G, Tiwari R, Tewari R, Dahiya N, Beg Q (2002) Microbial alkaline pectinases and their industrial applications: a review. Appl Microbiol Biotechnol 59(4–5):409–418PubMedGoogle Scholar
  7. 7.
    Gummadi SN, Panda T (2003) Purification and biochemical properties of microbial pectinases—a review. Process Biochem 38(7):987–996CrossRefGoogle Scholar
  8. 8.
    Jayani RS, Saxena S, Gupta R (2005) Microbial pectinolytic enzymes: a review. Process Biochem 40(9):2931–2944CrossRefGoogle Scholar
  9. 9.
    Gummadi SN, Kumar DS (2006) Optimization of chemical and physical parameters affecting the activity of pectin lyase and pectatelyase from Debaryomycesnepalensis: a statistical approach. Biochem Eng J 30(2):130–137CrossRefGoogle Scholar
  10. 10.
    Pedrolli DB, Monteiro AC, Gomes E, Carmona EC (2009) Pectin and Pectinases: production, characterization and industrial application of microbial pectinolytic enzymes. Open Biotechnol J 3:9–18CrossRefGoogle Scholar
  11. 11.
    Yadav S, Yadav PK, Yadav D, Yadav KDS (2009) Pectinlyase: a review. Process Biochem 44(1):1–10CrossRefGoogle Scholar
  12. 12.
    Khan M, Ekambaram N, Umesh-Kumar S (2013) Potential application of Pectinases in developing functional food. Annu Rev Food Sci Technol 4:21–34CrossRefGoogle Scholar
  13. 13.
    Sharma N, Rathore M, Sharma M (2013) Microbial Pectinases: sources, characterization and applications. Rev Environ Sci and Biotechnol 12(1):45–60CrossRefGoogle Scholar
  14. 14.
    Chaudhri A, Suneetha V (2012) Microbially derived Pectinases: a review. IOSR J Pharm Biol Sci 2(2):1–5Google Scholar
  15. 15.
    Dubey AK, Yadav S, Kumar M, Anand G, Yadav D (2016) Molecular biology of microbial pectate lyases: a review, British. Biotechnol J 13(1):1–26Google Scholar
  16. 16.
    Yadav PK, Singh VK, Yadav S, Yadav KDS, Yadav D (2009) In silico analysis of pectin lyase and pectinase sequences. Biochemistry 74(9):1049–1055PubMedGoogle Scholar
  17. 17.
    Dubey AK, Yadav S, Kumar M, Singh VK, Sarangi BK, Yadav D (2010) In silico characterization of pectatelyase protein sequences from different source organisms. Enzyme Res 2010:1–11CrossRefGoogle Scholar
  18. 18.
    Dubey AK, Yadav S, Rajput R, Anand G, Yadav D (2012) In silico characterization of bacterial, fungal and plant polygalacturonase protein sequences. Online J Bioinform 13:246–259Google Scholar
  19. 19.
    Lara-Marquez A, Zavala-Paramo MG, Lopez-Romero E, Calderon-Cortes N, Lopez-Gomez R, Conejo-Saucedo U, Cano-Camacho H (2011) Cloning and characterization of a pectin lyase gene from Colletotrichum lindemuthianum and comparative phylogenetic/structural analyses with genes from phytopathogenic and saprophytic/opportunistic microorganisms. BMC Microbiol.  https://doi.org/10.1186/1471-2180-11-260 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Cao J (2012) Pectin lyases in Arabidopsis thaliana: evolution, selection and expression profiles. PLoS One 7(10):e46944CrossRefGoogle Scholar
  21. 21.
    Jiang J, Yao L, Miao Y, Cao J (2013) Genome wide characterization of the pectatelyase-like (PLL) genes in Brassica rapa. Mol Genet Genom 288(11):601–614CrossRefGoogle Scholar
  22. 22.
    Bonnin E, Garnier C, Ralet MC (2014) Pectin-modifying enzymes and pectin-derived materials: applications and impact. Appl Microbiol Biotechnol 98(2):519–532CrossRefGoogle Scholar
  23. 23.
    Niture SK (2008) Comparative biochemical and structural characterizations of fungal polygalacturonases. Biologia 63(1):1–19CrossRefGoogle Scholar
  24. 24.
    Kim J, Shiu S-H, Thoma S, Li W-H, Patterson SE (2006) Patterns of expansions and expression divergence in the plant polygalacturonase gene family. Genome Biol 7(9):R87CrossRefGoogle Scholar
  25. 25.
    Yu Y, Liang Y, Lv M, Wu J, Lu G, Cao J (2014) Genome-wide identification and characterization of polygalacturonase genes in Cucumis sativus and Citrullus lanatus. Plant Physiol Biochem 74:263–275CrossRefGoogle Scholar
  26. 26.
    Park KC, Kwon SJ, Kim PH, Bureau T, Kim NS (2008) Gene structure dynamics and divergence of the polygalacturonase gene family of plants and fungus. Genome 51(1):30–40CrossRefGoogle Scholar
  27. 27.
    Yang Z-H, Liu H-J, Wang X-R, Zeng Q-Y (2013) Molecular evolution and expression divergence the Populus polygalacturonase super gene family shed light on the evolution of increasingly complex organ in plants. New Phytol 197(4):1353–1365CrossRefGoogle Scholar
  28. 28.
    Goff SA, Ricke D, Lan TH, Presting G, Wang R et al (2002) A draft sequence of rice genome (Oryza sativa L. ssp. japonica). Science 296(5565):92–100CrossRefGoogle Scholar
  29. 29.
    Jaillon O, Aury J-M, Noel B, Policriti A, Clepet C et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449(7161):463–467CrossRefGoogle Scholar
  30. 30.
    Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J et al (2009) The Sorghum bicolor genome and the diversification of grasse. Nature 457(7229):551–556CrossRefGoogle Scholar
  31. 31.
    Young ND, Debelle F, Oldroyd GED, Geurts R, Cannon SB et al (2011) The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480(7378):520–524CrossRefGoogle Scholar
  32. 32.
    Tang H, Krishnakumar V, Bidwell S, Rosen B, Chan A et al (2014) An improved genome release (version Mt4.04) for the model legume Medicago truncatula. BMC Genom.  https://doi.org/10.1186/1471-2164-15-312 CrossRefGoogle Scholar
  33. 33.
    Pruitt KD, Tatusova T, Maglott DR (2007) NCBI reference sequence (RefSeq): curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 35:D61–D65CrossRefGoogle Scholar
  34. 34.
    Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY et al (2014) Pfam: the protein families database. Nucleic Acids Res 42:D222–D230CrossRefGoogle Scholar
  35. 35.
    Emanuelsson O, Nielson H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300(4):1005–1016CrossRefGoogle Scholar
  36. 36.
    Small I, Peeters N, Legeai F, Lurin C (2004) Predotar: a tool for rapidly screening proteomes of N-terminal targeting sequence. Proteomics 4(6):1581–1590CrossRefGoogle Scholar
  37. 37.
    Petersen TN, Brunak S, von Heijne G, Nielson H (2011) SignalP 4.0: discriminating signal peptides from transmembrane region. Nat Methods 8(10):785–786CrossRefGoogle Scholar
  38. 38.
    Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G et al (2012) exPASy: SIB bioinformatics resource portal. Nucleic Acids Res 40:W597–W603CrossRefGoogle Scholar
  39. 39.
    Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Apple RD, Bairoch A (2002) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The Proteomics Protocols Handbook. Humana Press, New york, pp 571–607Google Scholar
  40. 40.
    Tamura K, Stecher G, Petersen D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729CrossRefGoogle Scholar
  41. 41.
    Librado P, Rozas J (2009) DnaSPv5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25(11):1451–1452CrossRefGoogle Scholar
  42. 42.
    Gu X (1999) Statistical methods for testing functional divergence after gene duplication. Mol Biol Evol 16(12):1664–1674CrossRefGoogle Scholar
  43. 43.
    Wang Y, Gu X (2001) Functional divergence in the caspase gene family and altered functional constraints: statistical analysis and prediction. Genetics 158(3):1311–1320PubMedPubMedCentralGoogle Scholar
  44. 44.
    Pond SLK, Frost SDW (2005) Not so different after all: a comparison of methods for detecting amino acids sites under selection. Mol Biol Evol 22(5):1208–1222CrossRefGoogle Scholar
  45. 45.
    Delport W, Poon AFY, Frost SDW, Pond SLK (2010) Datamonkey 2010: a suite for phylogenetic analysis tools for evolutionary biology. Bioinformatics 26(19):2455–2457CrossRefGoogle Scholar
  46. 46.
    Hadfield KA, Bennett AB (1998) Polygalacturonase: many genes in search of a function. Plant Physiol 117:337–343CrossRefGoogle Scholar
  47. 47.
    Sitrit Y, Hadfield KA, Bennett AB, Bradford KJ, Downie AB (1999) Expression of a polgalacturonase associated with tomato seed germination. Plant Physiol 121(2):419–428CrossRefGoogle Scholar
  48. 48.
    Sander L, Child R, Ulvskov P, Albrechtsen M, Borkhardt B (2001) Analysis of a dehiscence endo-polygalacturonase in oilseed rape (Brassica napus) and Arabidopsis thaliana: evidence for roles in cell separation in dehiscence & abscission zones, and in stylar tissues during pollen tube growth. Plant Mol Biol 46(4):469–479CrossRefGoogle Scholar
  49. 49.
    Demura T, Tashiro G, Horiguchi G, Kishimoto N, Kubo M et al (2002) Visualization by comprehensive microarray analysis of gene expression programs during transdiffernetiation of mesophyll cells into xylem cells. PNAS 99(24):15794–15799CrossRefGoogle Scholar
  50. 50.
    Mohnen D (2008) Pectin structure and biosynthesis. Curr Opin Plant Biol 11(3):266–277CrossRefGoogle Scholar
  51. 51.
    Ogawa M, Kay P, Wilson S, Swain SM (2009) Arabidopsis Dehiscence Zone Polygalacturonase1 (ADPG1), ADPG2 and QUARTET2 are polygalactironases required for cell separation during reproductive development in Arabidopsis. Plant Cell 21(1):216–233CrossRefGoogle Scholar
  52. 52.
    Orozco-Cardenas ML, Ryan CA (2003) Polygalacturonase β-subunit antisense gene expression in tomato plants leads to a progressive enhanced wound response and necrosis in leaves and abscission of developing flower. Plant Physiol 133(2):693–701CrossRefGoogle Scholar
  53. 53.
    Atkinson RG, Shroder R, Hallet IC, Cohen D, MacRae EA (2002) Overexpression of polygalacturonase in transgenic apple trees leads to a range of novel phenotypes involving changes in cell adhesion. Plant Physiol 129:122–133CrossRefGoogle Scholar
  54. 54.
    Fabi JP, Cordenunsi BR, Seymour GB, Lajobo FM, do Nascimento JR (2009) Molecular cloning and characterization of a ripening induced polygalacturonase related to papaya fruit softening. Plant Physiol Biochem 47:1075–1081CrossRefGoogle Scholar
  55. 55.
    Hurst LD (2002) The K a/K s ratio: diagnosing the form of sequence evolution. Trends Genet 18(9):486–487CrossRefGoogle Scholar
  56. 56.
    Nekrutenko A, Makova KD, Li WH (2002) The K a/K s ratio test for assessing the protein coding potential of genomic regions: an empirical and simulation study. Genome Res 12(1):198–202CrossRefGoogle Scholar
  57. 57.
    Suzuki Y, Gojobori T (1999) A method for detecting positive selection at single amino acid sites. Mol Biol Evol 16(10):1315–1328CrossRefGoogle Scholar
  58. 58.
    Lam HM, Xu X, Liu X, Chen W, Yang G et al (2010) Resequencing of 31 wild and cultivated soyabean genomes identifies patterns of genetic diversity and selection. Nat Genet 42(12):1053–1059CrossRefGoogle Scholar
  59. 59.
    Xu X, Liu X, Ge S, Jensen JD, Hu F et al (2011) Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nat Biotechnol 30(1):105–111CrossRefGoogle Scholar
  60. 60.
    Thakur S, Bothra AK, Sen A (2013) Functional divergence outlines the evolution of novel protein function in Nifh/BchL protein family. J Biosciences 38(4):733–740CrossRefGoogle Scholar
  61. 61.
    Scheffler K, Martin DP, Seoighe C (2006) Robust inference of positive selection from recombining coding sequences. Bioinformatics 22(22):2493–2499CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Gautam Anand
    • 1
  • Sangeeta Yadav
    • 1
  • Aiman Tanveer
    • 1
  • Jeya Nasim
    • 1
  • Nitish K. Singh
    • 1
    • 2
  • Amit K. Dubey
    • 1
  • Dinesh Yadav
    • 1
  1. 1.Department of BiotechnologyD.D.U Gorakhpur UniversityGorakhpurIndia
  2. 2.Department of BiotechnologyIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations