Molecular Docking and Molecular Dynamics Simulation Studies to Predict Flavonoid Binding on the Surface of DENV2 E Protein

Original Research Article


Dengue infections are currently estimated to be 390 million cases annually. Yet, there is no vaccine or specific therapy available. Envelope glycoprotein E (E protein) of DENV mediates viral attachment and entry into the host cells. Several flavonoids have been shown to inhibit HIV-1 and hepatitis C virus entry during the virus–host membrane fusion. In this work, molecular docking method was employed to predict the binding of nine flavonoids (baicalin, baicalein, EGCG, fisetin, glabranine, hyperoside, ladanein, quercetin and flavone) to the soluble ectodomain of DENV type 2 (DENV2) E protein. Interestingly, eight flavonoids were found to dock into the same binding pocket located between the domain I and domain II of different subunits of E protein. Consistent docking results were observed not only for the E protein structures of the DENV2-Thai and DENV2-Malaysia (a homology model) but also for the E protein structures of tick-borne encephalitis virus and Japanese encephalitis virus. In addition, molecular dynamics simulations were performed to further evaluate the interaction profile of the docked E protein–flavonoid complexes. Ile4, Gly5, Asp98, Gly100 and Val151 residues of the DENV2-My E protein that aligned to the same residues in the DENV2-Thai E protein form consistent hydrogen bond interactions with baicalein, quercetin and EGCG during the simulations. This study demonstrates flavonoids potentially form interactions with the E protein of DENV2.


Dengue virus Malaysia DENV2 Flavonoids Baicalin Baicalein EGCG Fisetin Glabranine Hyperoside Ladanein Quercetin Docking Molecular dynamics simulations Envelope glycoprotein E 

Supplementary material

12539_2016_157_MOESM1_ESM.pdf (1.3 mb)
Supplementary material 1 (PDF 1303 kb)


  1. 1.
    Wang E, Ni H, Xu R, Barrett AD, Watowich SJ, Gubler DJ, Weaver SC (2000) Evolutionary relationships of endemic/epidemic and sylvatic dengue viruses. J Virol 74(7):3227–3234CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Moncayo AC, Fernandez Z, Ortiz D, Diallo M, Sall A, Hartman S, Davis T, Coffey L, Mathiot CC, Tesh RB, Weaver SC (2004) Dengue emergence and adaptation to peridomestic mosquitoes. Emerg Infect Dis 10(10):1790–1796CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O, Myers MF, George DB, Jaenisch T, Wint GR, Simmons CP, Scott TW, Farrar JJ, Hay SI (2013) The global distribution and burden of dengue. Nature 496(7446):504–507CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Christian E, Kahle KM, Mattia K, Puffer BA, Pfaff JM, Miler A, Paes C, Davidson E, Doranz BJ (2013) Atomic level functional model of dengue virus envelope protein infectivity. PNAS 110(46):18662–18667CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Abu Bakar S, Shafee N (2002) Outlook of dengue in Malaysia: a century later. Malays J Pathol 24(1):23–27Google Scholar
  6. 6.
    Rodenhuis-Zybert IA, Wilschut J, Smit JM (2010) Dengue virus life cycle: viral and host factors modulating infectivity. Cell Mol Life Sci 67(16):2773–2786CrossRefPubMedGoogle Scholar
  7. 7.
    Mukhopadhyay S, Kuhn RJ, Rossmann MG (2005) A structural perspective of the flavivirus life cycle. Nat Rev Microbiol 3(1):13–22CrossRefPubMedGoogle Scholar
  8. 8.
    R-f Qi, Zhang L, C-w Chi (2008) Biological characteristics of dengue virus and potential targets for drug design. Acta Biochim Biophys Sin 40(2):91–101CrossRefGoogle Scholar
  9. 9.
    Acosta EG, Castilla V, Damonte EB (2008) Functional entry of dengue virus into Aedes albopictus mosquito cells is dependent on clathrin-mediated endocytosis. J Gen Virol 89(Pt 2):474–484CrossRefPubMedGoogle Scholar
  10. 10.
    Zhang Y, Zhang W, Ogata S, Clements D, Strauss JH, Baker TS, Kuhn RJ, Rossmann MG (2004) Conformational changes of the flavivirus E glycoprotein. Structure 12(9):1607–1618CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Zhang X, Ge P, Yu X, Brannan JM, Bi G, Zhang Q, Schein S, Zhou ZH (2013) Cryo-EM structure of the mature dengue virus at 3.5-A resolution. Nat Struct Mol Biol 20(1):105–110CrossRefPubMedGoogle Scholar
  12. 12.
    Stiasny K, Heinz FX (2006) Flavivirus membrane fusion. J Gen Virol 87(Pt 10):2755–2766CrossRefPubMedGoogle Scholar
  13. 13.
    Huang CY, Butrapet S, Moss KJ, Childers T, Erb SM, Calvert AE, Silengo SJ, Kinney RM, Blair CD, Roehrig JT (2010) The dengue virus type 2 envelope protein fusion peptide is essential for membrane fusion. Virology 396(2):305–315CrossRefPubMedGoogle Scholar
  14. 14.
    Klein DE, Choi JL, Harrison SC (2012) Structure of a dengue virus envelope protein late-stage fusion intermediate. J Virol 87(4):2287–2293CrossRefPubMedGoogle Scholar
  15. 15.
    Modis Y, Ogata S, Clements D, Harrison SC (2003) A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc Natl Acad Sci USA 100(12):6986–6991CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Poh MK, Yip A, Zhang S, Priestle JP, Ma NL, Smit JM, Wilschut J, Shi PY, Wenk MR, Schul W (2009) A small molecule fusion inhibitor of dengue virus. Antivir Res 84(3):260–266CrossRefPubMedGoogle Scholar
  17. 17.
    Wang QY, Patel SJ, Vangrevelinghe E, Xu HY, Rao R, Jaber D, Schul W, Gu F, Heudi O, Ma NL, Poh MK, Phong WY, Keller TH, Jacoby E, Vasudevan SG (2009) A small-molecule dengue virus entry inhibitor. Antimicrob Agents Chemother 53(5):1823–1831CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Lim SP, Wang QY, Noble CG, Chen YL, Dong H, Zou B, Yokokawa F, Nilar S, Smith P, Beer D, Lescar J (2013) Ten years of dengue drug discovery: progress and prospects. Antivir Res 100(2):500–519CrossRefPubMedGoogle Scholar
  19. 19.
    Pugach P, Ketas TJ, Michael E, Moore JP (2008) Neutralizing antibody and anti-retroviral drug sensitivities of HIV-1 isolates resistant to small molecule CCR5 inhibitors. Virology 377(2):401–407CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Lalezari JP, Henry K, O’Hearn M, Montaner JSG, Piliero PJ, Trottier B, Walmsley S, Cohen C, Kuritzkes DR, Eron JJ, Chung J, DeMasi R, Donatacci L, Drobnes C, Delehanty J, Salgo M (2003) Enfuvirtide, an HIV-1 fusion inhibitor, for drug-resistant HIV infection in North and South America. N Engl J Med 348(22):2174–2185CrossRefGoogle Scholar
  21. 21.
    Volz T, Allweiss L, ḾBarek MB, Warlich M, Lohse AW, Pollok JM, Alexandrov A, Urban S, Petersen J, Lütgehetmann M, Dandri M (2013) The entry inhibitor Myrcludex-B efficiently blocks intrahepatic virus spreading in humanized mice previously infected with hepatitis B virus. J Hepatol 58(5):861–867CrossRefPubMedGoogle Scholar
  22. 22.
    Murota K, Terao J (2003) Antioxidative flavonoid quercetin: implication of its intestinal absorption and metabolism. Arch Biochem Biophys 417(1):12–17CrossRefPubMedGoogle Scholar
  23. 23.
    Cushnie TPT, Lamb AJ (2005) Antimicrobial activity of flavonoids. Int J Antimicrob Agents 26(5):343–356CrossRefPubMedGoogle Scholar
  24. 24.
    Snijman PW, Swanevelder S, Joubert E, Green IR, Gelderblom WC (2007) The antimutagenic activity of the major flavonoids of rooibos (Aspalathus linearis): some dose-response effects on mutagen activation-flavonoid interactions. Mutat Res 631(2):111–123CrossRefPubMedGoogle Scholar
  25. 25.
    Calland N, Albecka A, Belouzard S, Wychowski C, Duverlie G, Descamps V, Hober D, Dubuisson J, Rouille Y, Seron K (2012) (-)-Epigallocatechin-3-gallate is a new inhibitor of hepatitis C virus entry. Hepatology 55(3):720–729CrossRefPubMedGoogle Scholar
  26. 26.
    Haid S, Novodomska A, Gentzsch J, Grethe C, Geuenich S, Bankwitz D, Chhatwal P, Jannack B, Hennebelle T, Bailleul F, Keppler OT, Poenisch M, Bartenschlager R, Hernandez C, Lemasson M, Rosenberg AR, Wong-Staal F, Davioud-Charvet E, Pietschmann T (2012) A plant-derived flavonoid inhibits entry of all HCV genotypes into human hepatocytes. Gastroenterology 143(1):213e5–222e5CrossRefGoogle Scholar
  27. 27.
    Li BQ, Fu T, Dongyan Y, Mikovits JA, Ruscetti FW, Wang JM (2000) Flavonoid baicalin inhibits HIV-1 infection at the level of viral entry. Biochem Biophys Res Commun 276(2):534–538CrossRefPubMedGoogle Scholar
  28. 28.
    Zandi K, Teoh B-T, Sam S-S, Wong P-F, Mustafa MR, AbuBakar S (2011) In vitro antiviral activity of Fisetin, Rutin and Naringenin against Dengue virus type-2. J Med Plants Res 5(23):5534–5539Google Scholar
  29. 29.
    Zandi K, Teoh B-T, Sam S-S, Wong P-F, Mustafa MR, Abubakar S (2011) Antiviral activity of four types of bioflavonoid against dengue virus type-2. Virol J 8:560CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Zandi K, Teoh B-T, Sam S-S, Wong P-F, Mustafa MR, AbuBakar S (2012) Novel antiviral activity of baicalein against dengue virus. BMC Complementary and Alternative Medicine 12(214):1–9Google Scholar
  31. 31.
    Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2013) GenBank. Nucleic Acids Res 41(Database issue):D36–D42PubMedGoogle Scholar
  32. 32.
    Rose PW, Bi C, Bluhm WF, Christie CH, Dimitropoulos D, Dutta S, Green RK, Goodsell DS, Prlic A, Quesada M, Quinn GB, Ramos AG, Westbrook JD, Young J, Zardecki C, Berman HM, Bourne PE (2013) The RCSB Protein Data Bank: new resources for research and education. Nucleic Acids Res 41(Database issue):D475–D482PubMedGoogle Scholar
  33. 33.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefPubMedGoogle Scholar
  34. 34.
    Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Soding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Clamp M, Cuff J, Searle SM, Barton GJ (2004) The Jalview Java alignment editor. Bioinformatics 20(3):426–427CrossRefPubMedGoogle Scholar
  36. 36.
    Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen MY, Pieper U, Sali A (2006) Comparative protein structure modeling using Modeller. Curr Protoc Bioinform. doi:10.1002/0471250953.bi0506s15 Google Scholar
  37. 37.
    Laskowski AR (2001) PDBsum: summaries and analyses of PDB structures. Nucleic Acids Res 29(1):221–222CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35(Web Server issue):W407–W410CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Holm L, Park J (2000) DaliLite workbench for protein structure comparison. Bioinformatics (Oxford, England) 16(6):566–567CrossRefGoogle Scholar
  40. 40.
    Weininger D (1988) SMILES, a chemical language and information system. Introduction to methodology and encoding rules. J Chem Inf Comput Sci 28(1):31–36CrossRefGoogle Scholar
  41. 41.
    Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461PubMedPubMedCentralGoogle Scholar
  42. 42.
    Kubinyi H (2007) Hydrogen bonding: the last mystery in drug design? Pharmacokinet Optim Drug Res 30:513–524Google Scholar
  43. 43.
    Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4(3):435–447CrossRefPubMedGoogle Scholar
  44. 44.
    Pronk S, Pall S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, van der Spoel D, Hess B, Lindahl E (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29:845–854CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Oostenbrink C, Villa A, Mark AE, van Gunsteren WF (2004) A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 25(13):1656–1676CrossRefPubMedGoogle Scholar
  46. 46.
    Pol-Fachin L, Fernandes CL, Verli H (2009) GROMOS96 43a1 performance on the characterization of glycoprotein conformational ensembles through molecular dynamics simulations. Carbohydr Res 344(4):491–500CrossRefPubMedGoogle Scholar
  47. 47.
    Schuttelkopf AW, Van Aalten DMF (2004) PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Cryst D60:1355–1363Google Scholar
  48. 48.
    Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J Chem Phys 98(12):10089CrossRefGoogle Scholar
  49. 49.
    Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81(8):3684CrossRefGoogle Scholar
  50. 50.
    Zandi K, Lani R, Wong P-F, Teoh B-T, Sam S-S, Johari J, Mustafa MR, AbuBakar S (2012) Flavone enhances dengue virus type-2 (NGC strain) infectivity and replication in Vero cells. Molecules 17(3):2437–2445CrossRefPubMedGoogle Scholar
  51. 51.
    Modis Y, Ogata S, Clements D, Harrison SC (2005) Variable surface epitopes in the crystal structure of dengue virus type 3 envelope glycoprotein. J Virol 79(2):1223–1231CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Sithisarn P, Michaelis M, Schubert-Zsilavecz M, Cinatl J Jr (2013) Differential antiviral and anti-inflammatory mechanisms of the flavonoids biochanin A and baicalein in H5N1 influenza A virus-infected cells. Antivir Res 97(1):41–48CrossRefPubMedGoogle Scholar
  53. 53.
    Hour MJ, Huang SH, Chang CY, Lin YK, Wang CY, Chang YS, Lin CW (2013) Baicalein, Ethyl Acetate, and Chloroform Extracts of Scutellaria baicalensis Inhibit the Neuraminidase Activity of Pandemic 2009 H1N1 and Seasonal Influenza A Viruses. Evid Based Complement Alternat Med 2013:750803CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Kaul TN, Middleton E, Ogra PL (1985) Antiviral effect of flavonoids on human viruses. J Med Virol 15(1):71–79CrossRefPubMedGoogle Scholar
  55. 55.
    Abe T, Sando A, Teraoka F, Otsubo T, Morita K, Tokiwa H, Ikeda K, Suzuki T, Hidari KI (2014) Computational design of a sulfoglucuronide derivative fitting into a hydrophobic pocket of dengue virus E protein. Biochem Biophys Res Commun 449(1):32–37CrossRefPubMedGoogle Scholar
  56. 56.
    Yennamalli R, Subbarao N, Kampmann T, McGeary RP, Young PR, Kobe B (2009) Identification of novel target sites and an inhibitor of the dengue virus E protein. J Comput Aided Mol Des 23(6):333–341CrossRefPubMedGoogle Scholar
  57. 57.
    Degreve L, Fuzo CA (2013) Structure and dynamics of the monomer of protein E of dengue virus type 2 with unprotonated histidine residues. Genet Mol Res 12(1):348–359CrossRefPubMedGoogle Scholar
  58. 58.
    Fuzo CA, Degrève L (2013) New pockets in dengue virus 2 surface identified by molecular dynamics simulation. J Mol Model 19(3):1369–1377CrossRefPubMedGoogle Scholar
  59. 59.
    Ingolfsson HI, Thakur P, Herold KF, Hobart EA, Ramsey NB, Periole X, de Jong DH, Zwama M, Yilmaz D, Hall K, Maretzky T, Hemmings HC Jr, Blobel C, Marrink SJ, Kocer A, Sack JT, Andersen OS (2014) Phytochemicals perturb membranes and promiscuously alter protein function. ACS Chem Biol 9(8):1788–1798CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Association of Scientists in the Interdisciplinary Areas and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Pharmaceutical Life Sciences, Faculty of PharmacyUniversiti Teknologi MARABandar Puncak AlamMalaysia

Personalised recommendations