PGWD: Integrating Personal Genome for Warfarin Dosing

  • Yidan Pan
  • Ronghai Cheng
  • Zhoufang Li
  • Yujun Zhao
  • Jiankui He
Original Research Article


Warfarin is a drug normally used in the prevention of thrombosis and the formation of blood clots. The dosage of warfarin is strongly affected by genetic variants of CYP2C9 and VKORC1 genes. Current technologies for detecting the variants of these genes are mainly based on real-time PCR. In recent years, due to the rapidly dropping cost of whole genome sequencing and genotyping, more and more people get their whole genome sequenced or genotyped. However, current software for warfarin dosing prediction is based on low-throughput genetic information from either real-time PCR or melting curve methods. There is no bioinformatics tool available that can take the high-throughput genome sequencing data as input and determine the accurate dosage of warfarin. Here, we present PGWD, a web tool that analyzes personal genome sequencing data and integrates with clinical information for warfarin dosing.


Warfarin Dosage Pharmacogenomics Genome interpretation 



This research is supported by the National Natural Science Foundation of China (Grant No. 31200688).


  1. 1.
    Holbrook AM, Pereira JA, Labiris R, McDonald H, Douketis JD, Crowther M et al (2005) Systematic overview of warfarin and its drug and food interactions. Arch Intern Med 165(10):1095–1106. doi: 10.1001/archinte.165.10.1095 PubMedCrossRefGoogle Scholar
  2. 2.
    Palareti G, Leali N, Coccheri S, Poggi M, Manotti C, D’Angelo A et al (1996) Bleeding complications of oral anticoagulant treatment: an inception-cohort, prospective collaborative study (ISCOAT). Italian study on complications of oral anticoagulant therapy. Lancet 348(9025):423–428PubMedCrossRefGoogle Scholar
  3. 3.
    Moyer TP, O’Kane DJ, Baudhuin LM, Wiley CL, Fortini A, Fisher PK et al (2009) Warfarin sensitivity genotyping: a review of the literature and summary of patient experience. Mayo Clin Proc 84(12):1079–1094. doi: 10.4065/mcp.2009.0278 PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Hewett M, Oliver DE, Rubin DL, Easton KL, Stuart JM, Altman RB et al (2002) PharmGKB: the pharmacogenetics knowledge base. Nucleic Acids Res 30(1):163–165PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Gage BF, Eby C, Johnson JA, Deych E, Rieder MJ, Ridker PM et al (2008) Use of pharmacogenetic and clinical factors to predict the therapeutic dose of warfarin. Clin Pharmacol Ther 84(3):326–331. doi: 10.1038/clpt.2008.10 PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Rieder MJ, Reiner AP, Gage BF, Nickerson DA, Eby CS, McLeod HL et al (2005) Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N Engl J Med 352(22):2285–2293. doi: 10.1056/NEJMoa044503 PubMedCrossRefGoogle Scholar
  7. 7.
    Sconce EA, Khan TI, Wynne HA, Avery P, Monkhouse L, King BP et al (2005) The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen. Blood 106(7):2329–2333. doi: 10.1182/blood-2005-03-1108 PubMedCrossRefGoogle Scholar
  8. 8.
    Zhu Y, Shennan M, Reynolds KK, Johnson NA, Herrnberger MR, Valdes R Jr et al (2007) Estimation of warfarin maintenance dose based on VKORC1 (\(-1639 \text{G}>\text{A}\)) and CYP2C9 genotypes. Clin Chem 53(7):1199–1205. doi: 10.1373/clinchem.2006.078139 PubMedCrossRefGoogle Scholar
  9. 9.
    Loebstein R, Dvoskin I, Halkin H, Vecsler M, Lubetsky A, Rechavi G et al (2007) A coding VKORC1 Asp36Tyr polymorphism predisposes to warfarin resistance. Blood 109(6):2477–2480. doi: 10.1182/blood-2006-08-038984 PubMedCrossRefGoogle Scholar
  10. 10.
    Eriksson S, Berg LM, Wadelius M, Alderborn A (2002) Cytochrome p450 genotyping by multiplexed real-time dna sequencing with pyrosequencing technology. Assay Drug Dev Technol 1(1 Pt 1):49–59. doi: 10.1089/154065802761001301 PubMedCrossRefGoogle Scholar
  11. 11.
    Wen SY, Wang H, Sun OJ, Wang SQ (2003) Rapid detection of the known SNPs of CYP2C9 using oligonucleotide microarray. World J Gastroenterol 9(6):1342–1346PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Bennett ST, Barnes C, Cox A, Davies L, Brown C (2005) Toward the 1000 dollars human genome. Pharmacogenomics 6(4):373–382. doi: 10.1517/14622416.6.4.373 PubMedCrossRefGoogle Scholar
  13. 13.
    Poller L, Keown M, Ibrahim S, Lowe G, Moia M, Turpie AG et al (2008) An international multicenter randomized study of computer-assisted oral anticoagulant dosage vs. medical staff dosage. J Thromb Haemost 6(6):935–943. doi: 10.1111/j.1538-7836.2008.02959.x PubMedCrossRefGoogle Scholar
  14. 14.
    van Leeuwen Y, Rombouts EK, Kruithof CJ, van der Meer FJ, Rosendaal FR (2007) Improved control of oral anticoagulant dosing: a randomized controlled trial comparing two computer algorithms. J Thromb Haemost 5(8):1644–1649. doi: 10.1111/j.1538-7836.2007.02610.x PubMedCrossRefGoogle Scholar
  15. 15.
    International Warfarin Pharmacogenetics C, Klein TE, Altman RB, Eriksson N, Gage BF, Kimmel SE et al (2009) Estimation of the warfarin dose with clinical and pharmacogenetic data. N Engl J Med 360(8):753–764. doi: 10.1056/NEJMoa0809329 CrossRefGoogle Scholar
  16. 16.
    Hamburg MA, Collins FS (2010) The path to personalized medicine. N Engl J Med 363(4):301–304. doi: 10.1056/NEJMp1006304 PubMedCrossRefGoogle Scholar

Copyright information

© International Association of Scientists in the Interdisciplinary Areas and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Yidan Pan
    • 1
  • Ronghai Cheng
    • 1
  • Zhoufang Li
    • 1
  • Yujun Zhao
    • 1
  • Jiankui He
    • 1
  1. 1.Department of BiologySouth University of Science and Technology of ChinaShenzhenChina

Personalised recommendations