In silico prediction of structure and functions for some proteins of male-specific region of the human Y chromosome

  • Chinmoy SahaEmail author
  • Ahsan Habib Polash
  • Md. Tariqul Islam
  • Farhana Shafrin


Male-specific region of the human Y chromosome (MSY) comprises 95% of its length that is functionally active. This portion inherits in block from father to male offspring. Most of the genes in the MSY region are involved in male-specific function, such as sex determination and spermatogenesis; also contains genes probably involved in other cellular functions. However, a detailed characterization of numerous MSY-encoded proteins still remains to be done. In this study, 12 uncharacterized proteins of MSY were analyzed through bioinformatics tools for structural and functional characterization. Within these 12 proteins, a total of 55 domains were found, with DnaJ domain signature corresponding to be the highest (11%) followed by both FAD-dependent pyridine nucleotide reductase signature and fumarate lyase superfamily signature (9%). The 3D structures of our selected proteins were built up using homology modeling and the protein threading approaches. These predicted structures confirmed in detail the stereochemistry; indicating reasonably good quality model. Furthermore the predicted functions and the proteins with whom they interact established their biological role and their mechanism of action at molecular level. The results of these structure-functional annotations provide a comprehensive view of the proteins encoded by MSY, which sheds light on their biological functions and molecular mechanisms. The data presented in this study may assist in future prognosis of several human diseases such as Turner syndrome, gonadal sex reversal, spermatogenic failure, and gonadoblastoma.

Key words

male specific region Y chromosome homology modeling structural domain protein functions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Arnold, K., Bordoli, L., Kopp, J., Schwede, T. 2006. The SWISS-MODEL workspace: A web-based environment for protein structure homology modelling. Bioinformatics 22, 195–201.PubMedCrossRefGoogle Scholar
  2. [2]
    Benkert, P., Biasini, M., Schwede, T. 2011. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 27, 343–350.PubMedCrossRefGoogle Scholar
  3. [3]
    Benkert, P., Künzli, M., Schwede, T. 2009. QMEAN server for protein model quality estimation. Nucl Acid Res 37, W510–W514.CrossRefGoogle Scholar
  4. [4]
    Benkert, P., Tosatto, S.C.E., Schomburg, D. 2008. QMEAN: A comprehensive scoring function for model quality assessment. Proteins 71, 261–277.PubMedCrossRefGoogle Scholar
  5. [5]
    Binkowski, T.A., Naghibzadeh, S., Liang, J. 2003. CASTp: Computed atlas of surface topography of proteins. Nucl Acid Res 31, 3352–3355.CrossRefGoogle Scholar
  6. [6]
    Bodade, R., Beedkar, S., Manwar, A., Khobragade, C. 2010. Homology modeling and docking study of xanthine oxidase of Arthrobacter sp. XL26. Int J Biol Macromol 47, 298–303.PubMedCrossRefGoogle Scholar
  7. [7]
    Bordoli, L., Kiefer, F., Arnold, K., Benkert, P., Battey, J., Schwede, T. 2008. Protein structure homology modeling using SWISS-MODEL workspace. Nat Protoc 4, 1–13.CrossRefGoogle Scholar
  8. [8]
    Brenner, S.E. 2001. A tour of structural genomics. Nat Rev Genet 2, 801–809.PubMedCrossRefGoogle Scholar
  9. [9]
    Burley, S.K., Joachimiak, A., Montelione, G.T., Wilson, I.A. 2008. Contributions to the NIH-NIGMS protein structure initiative from the PSI production centers. Structure 16, 5–11.PubMedCentralPubMedCrossRefGoogle Scholar
  10. [10]
    Colovos, C., Yeates, T.O. 1993. Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Sci 2, 1511–1519.PubMedCrossRefGoogle Scholar
  11. [11]
    DeLano, W.L. 2002. The PyMOL Molecular Graphics System. DeLano Scientific, San Carlos, USA.Google Scholar
  12. [12]
    Dundas, J., Ouyang, Z., Tseng, J., Binkowski, A., Turpaz, Y., Liang, J. 2006. CASTp: Computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucl Acid Res 34, W116–W118.CrossRefGoogle Scholar
  13. [13]
    Ellrott, K., Zmasek, C.M., Weekes, D., Krishna, S.S., Bakolitsa, C., Godzik, A., Wooley, J. 2011. TOPSAN: A dynamic web database for structural genomics. Nucl Acid Res 39, D494–D496.CrossRefGoogle Scholar
  14. [14]
    Eswar, N., Webb, B., Marti-Renom, M.A., Madhusudhan, M., Eramian, D., Shen, M.Y., Pieper, U., Sali, A. 2007. Comparative protein structure modeling using Modeller. Curr Protoc Protein Sci 2, 15–32.Google Scholar
  15. [15]
    Fridman, E., Pichersky, E. 2005. Metabolomics, genomics, proteomics, and the identification of enzymes and their substrates and products. Curr Opin Plant Biol 8, 242–248.PubMedCrossRefGoogle Scholar
  16. [16]
    Ginalski, K., Rychlewski, L., Baker, D., Grishin, N.V. 2004. Protein structure prediction for the male-specific region of the human Y chromosome. Proc Nat Acad Sci USA 101, 2305–2310.PubMedCrossRefGoogle Scholar
  17. [17]
    Graille, M., Quevillon-Cheruel, S., Leulliot, N., Zhou, C.Z., de La Sierra Gallay, I.L., Jacquamet, L., Ferrer, J.L., Liger, D., Poupon, A., Janin, J. 2004. Crystal structure of the YDR533c S. cerevisiae protein, a class II member of the Hsp31 family. Structure 12, 839–847.PubMedCrossRefGoogle Scholar
  18. [18]
    Hunter, S., Jones, P., Mitchell, A., Apweiler, R., Attwood, T.K., Bateman, A., Bernard, T., Binns, D., Bork, P., Burge, S. 2012. InterPro in 2011: New developments in the family and domain prediction database. Nucl Acid Res 40, D306–D312.CrossRefGoogle Scholar
  19. [19]
    Jain, E., Bairoch, A., Duvaud, S., Phan, I., Redaschi, N., Suzek, B., Martin, M., McGarvey, P., Gasteiger, E. 2009. Infrastructure for the life sciences: Design and implementation of the UniProt website. BMC Bioinformatics 10, 136.PubMedCentralPubMedCrossRefGoogle Scholar
  20. [20]
    Jaroszewski, L., Li, Z., Krishna, S.S., Bakolitsa, C., Wooley, J., Deacon, A.M., Wilson, I.A., Godzik, A. 2009. Exploration of uncharted regions of the protein universe. PLoS Biol 7, e1000205.PubMedCentralPubMedCrossRefGoogle Scholar
  21. [21]
    Julfayev, E.S., McLaughlin, R.J., Tao, Y.P., McLaughlin, W.A. 2011. A new approach to assess and predict the functional roles of proteins across all known structures. J Struct Funct Genomics 12, 9–20.PubMedCentralPubMedCrossRefGoogle Scholar
  22. [22]
    Kim S.H. 1998. Shining a light on structural genomics. Nature Struct Biology 5, 643–645.CrossRefGoogle Scholar
  23. [23]
    Koehl, P. 2001. Protein structure similarities. Curr Opin Struct Biol 11, 348–353.PubMedCrossRefGoogle Scholar
  24. [24]
    Kong, L., Ranganathan, S. 2004. Delineation of modular proteins: Domain boundary prediction from sequence information. Brief Bioinform 5, 179–192.PubMedCrossRefGoogle Scholar
  25. [25]
    Kuznetsova, E., Proudfoot, M., Sanders, S.A., Reinking, J., Savchenko, A., Arrowsmith, C.H., Edwards, A.M., Yakunin, A.F. 2005. Enzyme genomics: Application of general enzymatic screens to discover new enzymes. FEMS Microbiol Rev 29, 263–279.PubMedGoogle Scholar
  26. [26]
    Lahn, B.T., Pearson, N.M., Jegalian, K. 2001. The human Y chromosome, in the light of evolution. Nat Rev Genet 2, 207–216.PubMedCrossRefGoogle Scholar
  27. [27]
    Laskowski, R.A., MacArthur, M.W., Moss, D.S., Thornton, J.M. 1993. PROCHECK: A program to check the stereochemical quality of protein structures. J Appl Cryst 26, 283–291.CrossRefGoogle Scholar
  28. [28]
    Laskowski, R.A., Watson, J.D., Thornton, J.M. 2005. Protein function prediction using local 3D templates. J Mol Biol 351, 614–626.PubMedCrossRefGoogle Scholar
  29. [29]
    Li de La Sierra-Gallay, I., Collinet, B., Graille, M., Quevillon-Cheruel, S., Liger, D., Minard, P., Blondeau, K., Henckes, G., Aufrère, R., Leulliot, N. 2004. Crystal structure of the YGR205w protein from Saccharomyces cerevisiae: Close structural resemblance to E. coli pantothenate kinase. Proteins 54, 776–783.PubMedCrossRefGoogle Scholar
  30. [30]
    Marchler-Bauer, A., Lu, S., Anderson, J.B., Chitsaz, F., Derbyshire, M.K., DeWeese-Scott, C., Fong, J.H., Geer, L.Y., Geer, R.C., Gonzales, N.R. 2011. CDD: A Conserved Domain Database for the functional annotation of proteins. Nucl Acid Res 39, D225–D229.CrossRefGoogle Scholar
  31. [31]
    Melo, F., Feytmans, E. 1998. Assessing protein structures with a non-local atomic interaction energy1. J Mol Biol 277, 1141–1152.PubMedCrossRefGoogle Scholar
  32. [32]
    Moll, M., Kavraki, L.E. 2008. Matching of structural motifs using hashing on residue labels and geometric filtering for protein function prediction. 7th Annual International Conference on Computational Systems, Stanford University, USA.Google Scholar
  33. [33]
    Mulakayala, C., Banaganapalli, B.N., Anuradha, C., Chitta, S.K. 2009. Insights from Streptococcus pneumoniae glucose kinase structural model. Bioinformation 3, 308–310.PubMedCentralPubMedCrossRefGoogle Scholar
  34. [34]
    Nielsen, M., Lundegaard, C., Lund, O., Petersen, T.N. 2010. CPHmodels-3.0 — remote homology modeling using structure-guided sequence profiles. Nucl Acid Res 38, W576–W581.CrossRefGoogle Scholar
  35. [35]
    Pal, D., Eisenberg, D. 2005. Inference of protein function from protein structure. Structure 13, 121–130.PubMedCrossRefGoogle Scholar
  36. [36]
    Pazos, F., Sternberg, M.J.E. 2004. Automated prediction of protein function and detection of functional sites from structure. Proc Nat Acad Sci USA 101, 14754–14759.PubMedCrossRefGoogle Scholar
  37. [37]
    Pontius, J., Richelle, J., Wodak, S.J. 1996. Deviations from standard atomic volumes as a quality measure for protein crystal structures. J Mol Biol 264, 121–136.PubMedCrossRefGoogle Scholar
  38. [38]
    Punta, M., Coggill, P.C., Eberhardt, R.Y., Mistry, J., Tate, J., Boursnell, C., Pang, N., Forslund, K., Ceric, G., Clements, J. 2012. The Pfam protein families database. Nucl Acid Res 40, D290–D301.CrossRefGoogle Scholar
  39. [39]
    Ramachandran, G.N. 1963. Aspects of Protein Structure. Academic Press, New York.Google Scholar
  40. [40]
    Repping, S., Skaletsky, H., Brown, L., van Daalen, S.K.M., Korver, C.M., Pyntikova, T., Kuroda-Kawaguchi, T., de Vries, J.W.A., Oates, R.D., Silber, S. 2003. Polymorphism for a 1.6-Mb deletion of the human Y chromosome persists through balance between recurrent mutation and haploid selection. Nat Genet 35, 247–251.PubMedCrossRefGoogle Scholar
  41. [41]
    Roberts, R.J. 2011. NACON VIII: 8th International Meeting on Recognition Studies in Nucleic Acids: COMBREX: COMputational BRidge to EXperiments. Biochem Soc Trans 39, 581–583.PubMedCentralPubMedCrossRefGoogle Scholar
  42. [42]
    Rost, B., Liu, J., Nair, R., Wrzeszczynski, K.O., Ofran, Y. 2003. Automatic prediction of protein function. Cell Mol Life Sci 60, 2637–2650.PubMedCrossRefGoogle Scholar
  43. [43]
    Roy, A., Kucukural, A., Zhang, Y. 2010. I-TASSER: A unified platform for automated protein structure and function prediction. Nat Protoc 5, 725–738.PubMedCentralPubMedCrossRefGoogle Scholar
  44. [44]
    Rozen, S., Skaletsky, H., Marszalek, J.D., Minx, P.J., Cordum, H.S., Waterston, R.H., Wilson, R.K., Page, D.C. 2003. Abundant gene conversion between arms of palindromes in human and ape Y chromosomes. Nature 423, 873–876.PubMedCrossRefGoogle Scholar
  45. [45]
    Sahay, A., Shakya, M. 2010. In silico analysis and homology modelling of antioxidant proteins of spinach. J Proteomics Bioinform 3, 148–154.CrossRefGoogle Scholar
  46. [46]
    Sarma, K., Dehury, B., Sahu, J., Sarmah, R., Sahoo, S., Sahu, M., Sen, P., Modi, M.K., Barooah, M. 2012. A comparative proteomic approach to analyse structure, function and evolution of rice chitinases: A step towards increasing plant fungal resistance. J Mol Model 18, 4761–4780.PubMedCrossRefGoogle Scholar
  47. [47]
    Shi, Y.C., Cui, Y.X., Zhou, Y.C., Wei, L., Jiang, H.T., Xia, X.Y., Lu, H.Y., Wang, H.Y., Shang, X.J., Zhu, W.M. 2011. A rare Y chromosome constitutional rearrangement: A partial AZFb deletion and duplication within chromosome Yp in an infertile man with severe oligoasthenoteratozoospermia. Int J Androl 34, 461–469.PubMedCrossRefGoogle Scholar
  48. [48]
    Singh, S., Kumar, A., Patel, A., Tripathi, A., Kumar, D., Verma, M.K. 2010. In silico 3D structure prediction and comparison of nucleocapsid protein of H1N1. JMSS 1, 108–111.Google Scholar
  49. [49]
    Skaletsky, H., Kuroda-Kawaguchi, T., Minx, P.J., Cordum, H.S., Hillier, L.D., Brown, L.G., Repping, S., Pyntikova, T., Ali, J., Bieri, T. 2003. The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature 423, 825–837.PubMedCrossRefGoogle Scholar
  50. [50]
    Somarowthu, S., Ondrechen, M.J. 2012. POOL server: Machine learning application for functional site prediction in proteins. Bioinformatics 28, 2078–2079.PubMedCrossRefGoogle Scholar
  51. [51]
    Somarowthu, S., Yang, H., Hildebrand, D.G., Ondrechen, M.J. 2011. High-performance prediction of functional residues in proteins with machine learning and computed input features. Biopolymers 95, 390–400.PubMedCrossRefGoogle Scholar
  52. [52]
    Szklarczyk, D., Franceschini, A., Kuhn, M., Simonovic, M., Roth, A., Minguez, P., Doerks, T., Stark, M., Muller, J., Bork, P. 2011. The STRING database in 2011: Functional interaction networks of proteins, globally integrated and scored. Nucl Acid Res 39, D561–D568.CrossRefGoogle Scholar
  53. [53]
    Teplyakov, A., Obmolova, G., Sarikaya, E., Pullalarevu, S., Krajewski, W., Galkin, A., Howard, A.J., Herzberg, O., Gilliland, G.L. 2004. Crystal structure of the YgfZ protein from Escherichia coli suggests a folate-dependent regulatory role in one-carbon metabolism. J Bacteriol 186, 7134–7140.PubMedCentralPubMedCrossRefGoogle Scholar
  54. [54]
    Teplyakov, A., Pullalarevu, S., Obmolova, G., Doseeva, V., Galkin, A., Herzberg, O., Dauter, M., Dauter, Z., Gilliland, G. 2004. Crystal structure of the YffB protein from Pseudomonas aeruginosa suggests a glutathione-dependent thiol reductase function. BMC Struc Biol 4, 5.CrossRefGoogle Scholar
  55. [55]
    Vogt, P., Affara, N., Davey, P., Hammer, M., Jobling, M., Lau, Y., Mitchell, M., Schempp, W., Tyler-Smith, C., Williams, G. 1997. Report of the 3rd International Workshop on Y Chromosome Mapping. Cytogenet Cell Genet 79, 1–20.PubMedCrossRefGoogle Scholar
  56. [56]
    Ward, R.M., Venner, E., Daines, B., Murray, S., Erdin, S., Kristensen, D.M., Lichtarge, O. 2009. Evolutionary Trace Annotation Server: Automated enzyme function prediction in protein structures using 3D templates. Bioinformatics 25, 1426–1427.PubMedCrossRefGoogle Scholar
  57. [57]
    Wiederstein, M., Sippl, M.J. 2007. ProSA-web: Interactive web service for the recognition of errors in threedimensional structures of proteins. Nucl Acid Res 35, W407–W410.CrossRefGoogle Scholar
  58. [58]
    Wu, S., Skolnick, J., Zhang, Y. 2007. Ab initio modeling of small proteins by iterative TASSER simulations. BMC Biol 5, 17.PubMedCentralPubMedCrossRefGoogle Scholar
  59. [59]
    Zhang, Y. 2008. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9, 40.PubMedCentralPubMedCrossRefGoogle Scholar
  60. [60]
    Zhang, Y. 2009. I-TASSER: Fully automated protein structure prediction in CASP8. Proteins 77, 100–113.PubMedCentralPubMedCrossRefGoogle Scholar
  61. [61]
    Zhang, Y., Kihara, D., Skolnick, J. 2002. Local energy landscape flattening: Parallel hyperbolic Monte Carlo sampling of protein folding. Proteins 48, 192–201.PubMedCrossRefGoogle Scholar

Copyright information

© International Association of Scientists in the Interdisciplinary Areas and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Chinmoy Saha
    • 1
    • 2
    Email author
  • Ahsan Habib Polash
    • 1
  • Md. Tariqul Islam
    • 1
  • Farhana Shafrin
    • 1
  1. 1.Molecular Biology Lab, Department of Biochemistry and Molecular BiologyUniversity of DhakaDhakaBangladesh
  2. 2.Department of Genetic Engineering and BiotechnologyShahjalal University of Science and TechnologySylhetBangladesh

Personalised recommendations