Single nucleotide polymorphism and its dynamics for pharmacogenomics

  • Pramod KataraEmail author


Pharmacogenomics is the study of how the genetic makeup determines the response to a therapeutic intervention. It has the capability to revolutionize the practice of medicine by personalized approach for treatment through the use of novel diagnostic tools. Pharmacogenomic based approaches reduce the trial-and-error approach and restrict the exposure of patients to those drugs which are not effective or are toxic for them. Single Nucleotide Polymorphisms (SNPs) hold the key in defining the risk of an individual’s susceptibility to various illnesses and response to drugs. There is an ongoing process of identifying the common, biologically relevant SNPs, in particular those that are associated with the risk of disease and adverse drug reaction. The identification and characterization of these SNPs are necessary before their use as genetic tools. Most of the ongoing SNP related studies are biased deliberately towards coding regions and the data generated from them are therefore unlikely to reflect genome wide distribution of SNPs. To avoid this biasing towards the coding regions SNP, SNP consortium protocol was designed. Though, projects like the HapMap increase credibility and use of SNPs, still there are some concern like the required sample (patient) sizes, the number of SNPs required for mapping, number of association studies, the cost of SNP genotyping, and the interpretation and explanation of results are some of the challenges that surround this field.

Key words

Adverse Drug Response Drug Polymorphism Variable Drug Response 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Appell ML, Berg J, Duley J, Evans WE, Kennedy MA, Lennard L, Marinaki T, McLeod HL, Relling MV, Schaeffeler E, Schwab M, Weinshilboum R, Yeoh AE, McDonagh EM, Hebert JM, Klein TE, Coulthard SA (2013) Nomenclature for alleles of the thiopurine methyltransferase gene. Pharmacogenet Genomics 23(4): 242–248.PubMedCentralPubMedCrossRefGoogle Scholar
  2. [2]
    Barnes MR (2006) Navigating the HapMap. Brief Bioinform 7: 211–224.PubMedCrossRefGoogle Scholar
  3. [3]
    Biro JC, Biro JM (2004) A novel sequence similarity searching and visualization method based on overlapping translated nucleic acids: the blastNP. Med Hypotheses 62: 568–574.PubMedCrossRefGoogle Scholar
  4. [4]
    Brandon MC, Lott MT, Nguyen KC, Spolim S, Navathe SB, Baldi P, Wallace DC (2005) MITOMAP: a human mitochondrial genome database-2004 update. Nucleic Acids Res 33: D611–D613.PubMedCentralPubMedCrossRefGoogle Scholar
  5. [5]
    Carlson CS, Eberle MA, Kruglyak L, Nickerson DA (2004) Mapping complex disease loci in whole-genome association studies. Nature 429: 446–452.PubMedCrossRefGoogle Scholar
  6. [6]
    Chang HW, Chuang LY, Tsai MT, Yang CH (2012) The importance of integrating SNP and cheminformatics resources to pharmacogenomics. Curr Drug Metab 13: 991–999.PubMedCrossRefGoogle Scholar
  7. [7]
    Danielson PB (2002) The cytochrome P450 superfamily: biochemistry, evolution and drug metabolism in humans. Curr Drug Metab 3(6): 561–597.PubMedCrossRefGoogle Scholar
  8. [8]
    Frederic MY, Lalande M, Boileau C, Hamroun D, Claustres M, Beroud C, Collod-Beroud G (2009) UMD-predictor, a new prediction tool for nucleotide substitution pathogenicity — application to four genes: FBN1, FBN2, TGFBR1, and TGFBR2. Hum Mutat 30(6): 952–959.PubMedCrossRefGoogle Scholar
  9. [9]
    Gattepaille LM, Jakobsson M, Blum MG (2013) Inferring population size changes with sequence and SNP data: lessons from human bottlenecks. Heredity (Edinb) 110(5): 409–419.CrossRefGoogle Scholar
  10. [10]
    Hunt R, Sauna ZE, Ambudkar SV, Gottesman MM, Kimchi-Sarfaty C (2009) Silent (synonymous) SNPs: should we care about them? Methods Mol Biol 578: 23–39.PubMedCrossRefGoogle Scholar
  11. [11]
    Huttunen KM, Mähönen N, Raunio H, Rautio J (2008) Cytochrome P450-activated prodrugs: targeted drug delivery. Cur MED Chem 15(23): 2346–2365CrossRefGoogle Scholar
  12. [12]
    International Hap Map Consortium, Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, Gibbs RA, Belmont JW, Boudreau A, Hardenbol P, Leal SM, Pasternak S, Wheeler DA, Willis TD, Yu F, Yang H, Zeng C, Gao Y, Hu H, Hu W, Li C, Lin W, Liu S, Pan H, Tang X, Wang J, Wang W, Yu J, Zhang B, Zhang Q, Zhao H, Zhao H, Zhou J, Gabriel SB, Barry R, Blumenstiel B, Camargo A, Defelice M, Faggart M, Goyette M, Gupta S, Moore J, Nguyen H, Onofrio RC, Parkin M, Roy J, Stahl E, Winchester E, Ziaugra L, Altshuler D, Shen Y, Yao Z, Huang W, Chu X, He Y, Jin L, Liu Y, Shen Y, Sun W, Wang H, Wang Y, Wang Y, Xiong X, Xu L, Waye MM, Tsui SK, Xue H, Wong JT, Galver LM, Fan JB, Gunderson K, Murray SS, Oliphant AR, Chee MS, Montpetit A, Chagnon F, Ferretti V, Leboeuf M, Olivier JF, Phillips MS, Roumy S, Sallée C, Verner A, Hudson TJ, Kwok PY, Cai D, Koboldt DC, Miller RD, Pawlikowska L, Taillon-Miller P, Xiao M, Tsui LC, Mak W, Song YQ, Tam PK, Nakamura Y, Kawaguchi T, Kitamoto T, Morizono T, Nagashima A, Ohnishi Y, Sekine A, Tanaka T, Tsunoda T, Deloukas P, Bird CP, Delgado M, Dermitzakis ET, Gwilliam R, Hunt S, Morrison J, Powell D, Stranger BE, Whittaker P, Bentley DR, Daly MJ, de Bakker PI, Barrett J, Chretien YR, Maller J, McCarroll S, Patterson N, Pe’er I, Price A, Purcell S, Richter DJ, Sabeti P, Saxena R, Schaffner SF, Sham PC, Varilly P, Altshuler D, Stein LD, Krishnan L, Smith AV, Tello-Ruiz MK, Thorisson GA, Chakravarti A, Chen PE, Cutler DJ, Kashuk CS, Lin S, Abecasis GR, Guan W, Li Y, Munro HM, Qin ZS, Thomas DJ, McVean G, Auton A, Bottolo L, Cardin N, Eyheramendy S, Freeman C, Marchini J, Myers S, Spencer C, Stephens M, Donnelly P, Cardon LR, Clarke G, Evans DM, Morris AP, Weir BS, Tsunoda T, Mullikin JC, Sherry ST, Feolo M, Skol A, Zhang H, Zeng C, Zhao H, Matsuda I, Fukushima Y, Macer DR, Suda E, Rotimi CN, Adebamowo CA, Ajayi I, Aniagwu T, Marshall PA, Nkwodimmah C, Royal CD, Leppert MF, Dixon M, Peiffer A, Qiu R, Kent A, Kato K, Niikawa N, Adewole IF, Knoppers BM, Foster MW, Clayton EW, Watkin J, Gibbs RA, Belmont JW, Muzny D, Nazareth L, Sodergren E, Weinstock GM, Wheeler DA, Yakub I, Gabriel SB, Onofrio RC, Richter DJ, Ziaugra L, Birren BW, Daly MJ, Altshuler D, Wilson RK, Fulton LL, Rogers J, Burton J, Carter NP, Clee CM, Griffiths M, Jones MC, McLay K, Plumb RW, Ross MT, Sims SK, Willey DL, Chen Z, Han H, Kang L, Godbout M, Wallenburg JC, L’Archevéque P, Bellemare G, Saeki K, Wang H, An D, Fu H, Li Q, Wang Z, Wang R, Holden AL, Brooks LD, McEwen JE, Guyer MS, Wang VO, Peterson JL, Shi M, Spiegel J, Sung LM, Zacharia LF, Collins FS, Kennedy K, Jamieson R, Stewart J (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature 449: 851–861.PubMedCrossRefGoogle Scholar
  13. [13]
    Janjic V, Przulj N (2012) The Core Diseasome. Mol Biosyst 8: 2614–2625.PubMedCrossRefGoogle Scholar
  14. [14]
    Katara P (2013) Role of bioinformatics and pharmacogenomics in drug discovery and development process. Netw Model Anal Health Inform Bioinforma DOI 10.1007/s13721-013-0039-5.Google Scholar
  15. [15]
    Kirk BW, Feinsod M, Favis R, Kliman RM, Barany F (2002) Single nucleotide polymorphism seeking long term association with complex disease. Nucleic Acids Res 30(15): 3295–3311.PubMedCentralPubMedCrossRefGoogle Scholar
  16. [16]
    Klein K, Zanger UM (2013) Pharmacogenomics of Cytochrome P450 3A4: Recent Progress Toward the “Missing Heritability” Problem. Front Genet 4: 12.PubMedCentralPubMedCrossRefGoogle Scholar
  17. [17]
    Kumar A, Purohit R (2013) Cancer associated E17K mutation causes rapid conformational drift in AKT1 pleckstrin homology (PH) domain. PLoS One 8(5): e64364.PubMedCentralPubMedCrossRefGoogle Scholar
  18. [18]
    Kwok PY, Chen X (2003) Detection of single nucleotide polymorphisms. Curr Issues Mol Biol 5: 43–60.PubMedGoogle Scholar
  19. [19]
    Laing RE, Hess P, Shen Y, Wang J, Hu SX (2011) The role and impact of SNPs in pharmacogenomics and personalized medicine. Curr Drug Metab 12: 460–486.PubMedCrossRefGoogle Scholar
  20. [20]
    Lennard L, Cartwright CS, Wade R, Richards SM, Vora A (2013) Thiopurine methyltransferase genotypephenotype discordance, and thiopurine active metabolite formation, in childhood acute lymphoblastic leukaemia. Br J Clin Pharmacol 76(1): 125.PubMedCentralPubMedCrossRefGoogle Scholar
  21. [21]
    Marsh S, Kwok P, McLeod HL (2002) SNP databases and pharmacogenetics: great start, but a long way to go. Hum Mutat 20: 174–179.PubMedCrossRefGoogle Scholar
  22. [22]
    McCarthy JJ, Hilfiker R (2000) The use of singlenucleotide polymorphism maps in pharmacogenomics. Nat Biotechnol 18(5): 505–508.PubMedCrossRefGoogle Scholar
  23. [23]
    McGraw J, Waller D (2012) Cytochrome P450 variations in different ethnic populations. Expert Opin Drug Metab Toxicol 8: 371–382.PubMedCrossRefGoogle Scholar
  24. [24]
    Nebert DW, Wikvall K, Miller WL (2013) Human cytochromes P450 in health and disease. Philos Trans R Soc Lond B Biol Sci 368: 20120431.PubMedCentralPubMedCrossRefGoogle Scholar
  25. [25]
    Nelson DR (2013) A world of cytochrome P450s. Philos Trans R Soc Lond B Biol Sci 368: 20120430.PubMedCentralPubMedCrossRefGoogle Scholar
  26. [26]
    Ortiz de Montellano PR (2013) Cytochrome P450-activated prodrugs. Future Med Chem 5: 213–228.PubMedCentralPubMedCrossRefGoogle Scholar
  27. [27]
    Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R (2010) SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res 38: D237–D243.PubMedCentralPubMedCrossRefGoogle Scholar
  28. [28]
    Rajendran V, Purohit R, Sethumadhavan R (2012) In silico investigation of molecular mechanism of laminopathy caused by a point mutation (R482W) in lamin A/C protein. Amino Acids 43(2): 603–615.PubMedCrossRefGoogle Scholar
  29. [29]
    Riva A, Kohane IS (2002) SNPper: retrieval and analysis of human SNPs. Bioinformatics 18: 1681–1685.PubMedCrossRefGoogle Scholar
  30. [30]
    Roden DM, Wilke RA, Kroemer HK, Stein CM (2011) Pharmacogenomics: the genetics of variable drug responses. Circulation 123(15): 1661–1670.PubMedCentralPubMedCrossRefGoogle Scholar
  31. [31]
    Rozanov M, Plikat U, Chappey C, Kochergin A, Tatusova T (2004) A web-based genotyping resource for viral sequences. Nucleic Acids Res 32: W654–W659.PubMedCentralPubMedCrossRefGoogle Scholar
  32. [32]
    Rutherford K, Daggett V (2008) Four human thiopurine s-methyltransferase alleles severely affect protein structure and dynamics. J Mol Biol 379(4): 803–814.PubMedCentralPubMedCrossRefGoogle Scholar
  33. [33]
    Salavaggione OE, Wang L, Wiepert M, Yee VC, Weinshilboum RM (2005) Thiopurine S-methyltransferase pharmacogenetics: variant allele functional and comparative genomics. Pharmacogenet Genomics 15(11): 801–815.PubMedCrossRefGoogle Scholar
  34. [34]
    Shastry BS (2009) SNPs: impact on gene function and phenotype. Methods Mol Biol 578: 3–22.PubMedCrossRefGoogle Scholar
  35. [35]
    Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K (2001) dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 29: 308–311.PubMedCentralPubMedCrossRefGoogle Scholar
  36. [36]
    Sim NL, Kumar P, Hu J, Henikoff S, Schneider G, Ng PC (2012) SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res 40: W452–W457.PubMedCentralPubMedCrossRefGoogle Scholar
  37. [37]
    Smedley D, Haider S, Ballester B, Holland R, London D, Thorisson G, Kasprzyk A (2009) BioMart-biological queries made easy. BMC Genomics 10: 22.PubMedCentralPubMedCrossRefGoogle Scholar
  38. [38]
    Teo YY, Sim X, Ong RT, Tan AK, Chen J, Tantoso E, Small KS, Ku CS, Lee EJ, Seielstad M, Chia KS (2009) Singapore Genome Variation Project: a haplotype map of three Southeast Asian populations. Genome Res 19: 2154–2162.PubMedCentralPubMedCrossRefGoogle Scholar
  39. [39]
    Thorisson GA, Smith AV, Krishnan L, Stein LD (2005) The International HapMap Project Web site. Genome Res 15: 1592–1593.PubMedCentralPubMedCrossRefGoogle Scholar
  40. [40]
    Useche FJ, Gao G, Harafey M, Rafalski A (2001) Highthroughput identification, database storage and analysis of SNPs in EST sequences. Genome Inform 12: 194–203.PubMedGoogle Scholar
  41. [41]
    van Oeveren J, Janssen A (2009) Mining SNPs from DNA sequence data; computational approaches to SNP discovery and analysis. Methods Mol Biol 578: 73–91.PubMedCrossRefGoogle Scholar
  42. [42]
    Wang J, Pang GS, Chong SS, Lee CG (2012) SNP web resources and their potential applications in personalized medicine. Curr Drug Metab 13: 978–990.PubMedCrossRefGoogle Scholar
  43. [43]
    Weng L, Zhang L, Peng Y, Huang RS (2013) Pharmacogenetics and pharmacogenomics: a bridge to individualized cancer therapy. Pharmacogenomics 14(3): 315–324.PubMedCentralPubMedCrossRefGoogle Scholar
  44. [44]
    Whirl-Carrillo M, McDonagh EM, Hebert JM, Gong L, Sangkuhl K, Thorn CF, Altman RB, Klein TE (2012) Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther 92(4): 414–417.PubMedCentralPubMedCrossRefGoogle Scholar
  45. [45]
    Yang CH, Cheng YH, Chuang LY, Chang HW (2013) Drug-SNPing: an integrated drug-based, protein interaction-based tagSNP-based pharmacogenomics platform for SNP genotyping. Bioinformatics 29(6): 758–764.PubMedCrossRefGoogle Scholar
  46. [46]
    Zanger UM, Schwab M (2013) Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther 138(1): 103–141.PubMedCrossRefGoogle Scholar
  47. [47]
    Zou M, Baitei EY, Alzahrani AS, Parhar RS, Al-Mohanna FA, Meyer BF, Shi Y (2011) Mutation prediction by PolyPhen or functional assay, a detailed comparison of CYP27B1 missense mutations. Endocrine 40: 14–20.PubMedCrossRefGoogle Scholar

Copyright information

© International Association of Scientists in the Interdisciplinary Areas and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Center of BioinformaticsUniversity of AllahabadAllahabadIndia

Personalised recommendations