Genetic ancestor of external antigens of pandemic influenza A/H1N1 virus

  • Ramaiah Arunachalam
  • Kanniah Paulkumar
  • Gurusamy Annadurai
Article

Abstract

The aim of the present investigation was to discover the genetic relationships of 2009 pandemic novel influenza A/H1N1 virus (NIV) external antigens Hemagglutinin (HA) and Neuraminidase (NA) with other influenza viruses by performing phylogenetic, comparative and statistical analyses. Phylogenetic trees of these two antigens show that the sequences of the NIV viruses are relatively homogeneous and these were derived from several viruses circulating in swine. The phylogenetic tree of HA shows that NIV had the closest relationship with North-American pig lineages whereas NA had with European pig lineages. In both segments, NIVs had the closest genetic relationship with swine influenza virus lineages. It strongly suggests that pigs are the most possible animal reservoir. Comparative analysis shows that among clade A, NIVs had very low genetic divergence as well as high similarity and also suffered strong purifying selection whereas neighbor clade B shows moderate values when compared to those of clades C-F. It indicates that classical swine influenza viruses present in clade B might be an ancestor of NIVs external antigens. The process of re-assortment occurred in classical swine influenza viruses. The mutation sites exclusively fixed in the NIV of swine and human along with vaccine strain provide an important suggestion for disease diagnosis and vaccine research.

Key words

influenza A/H1N1 virus surface antigens phylogeny genetic relationship 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Al-Majhdi, F.N. 2007. Structure of the sialic acid binding site in influenza A virus: Hemagglutinin. J Biol Sci 7, 113–122.CrossRefGoogle Scholar
  2. [2]
    Arunachalam, R., Paulkumar, K., Annadurai, G. 2012a. Phylogenetic analysis of pandemic influenza A/H1N1 virus. Biologia 67, 14–31.CrossRefGoogle Scholar
  3. [3]
    Arunachalam, R., Senthilkumar, B., Senbagam, D., Selvamaleeswaran, P., Rajasekarapandian, M. 2012b. Molecular phylogenetic approach for classification of Salmonella typhi. Res J Microbiol 7, 13–22.CrossRefGoogle Scholar
  4. [4]
    Babakir-Mina, M., Dimonte, S., Perno, C.F., Ciotti, M. 2009. Origin of the 2009 Mexico influenza virus: A comparative phylogentic analysis of the principal external antigens and matrix protein. Arch Virol 154, 1349–1352.PubMedCrossRefGoogle Scholar
  5. [5]
    Centers for Disease Control and Prevention (CDC). 2009a. Swine influenza A(H1N1) infection in two children-southern California, March–April 2009. MMWR, Morb Mortal Wkly Rep 58, 400–402.Google Scholar
  6. [6]
    Centers for Disease Control and Prevention (CDC). 2009b. Update swine influenza A(H1N1) infections - California and Texas, April 2009. MMWR Mrob Mortal Wkly Rep 58, 1–3.Google Scholar
  7. [7]
    Dawood, F.S., Jain, S., Finelli, L., Shaw, M.W., Lindstrom, S., Garten, R.J., Gubareva, L.V., Xu, X., Bridges, C.B., Uyeki, T.M. 2009. Emergence of a novel swine-origin influenza A(H1N1) virus in humans. N Engl J Med 360, 2605–2615.PubMedCrossRefGoogle Scholar
  8. [8]
    Ding, N., Wu, N., Xu, Q., Chen, K., Zhang, C. 2009. Molecular evolution of novel swine-origin A/H1N1 influenza viruses among and before human. Virus Genes 39, 293–300.PubMedCrossRefGoogle Scholar
  9. [9]
    Guindon, S., Gascuel, O. 2003. A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52, 696–704.PubMedCrossRefGoogle Scholar
  10. [10]
    Gurumani, N. 2005. An Introduction to Biostatistics, 2nd Edition. MJP Publishers, Chennai.Google Scholar
  11. [11]
    Jones, D.T., Taylor, W.R., Thornton, J.M. 1992. The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8, 275–282.PubMedGoogle Scholar
  12. [12]
    Kuiken, T., Holme, E.C., McCauley, J., Rimmelzwaan, G.F., Williams, C.S., Grenfell, B.T. 2006. Host species barriers to Influenza virus infections. Science 312, 394–397.PubMedCrossRefGoogle Scholar
  13. [13]
    Ma, W., Vincent, A.L., Lager, K.M., Janke, B.H., Henry, S.C., Rowland, R.R.R., Hesse, R.A., Richt, J.A. 2010. Identification and characterization of a highly virulent triple reassortant H1N1 swine influenza virus in the United States. Virus Genes 40, 28–36.PubMedCrossRefGoogle Scholar
  14. [14]
    Palese, P., Young, J.F. 1982. Variation of influenza A, B and C viruses. Science 215, 1468–1474.PubMedCrossRefGoogle Scholar
  15. [15]
    Rogers, G.N., Paulson, J.C., Daniels, R.S., Skehel, J.J., Wilson, I.A., Wiley, D.C. 1983. Single amino acid substitutions in influenza haemagglutinin change receptor binding specificity. Nature 304, 76–78.PubMedCrossRefGoogle Scholar
  16. [16]
    Scholtissek, C. 1990. Pigs as ‘mixing vessels’ for the creation of new pandemic influenza A viruses. Med Princ Pract 2, 65–71.Google Scholar
  17. [17]
    Shinde, V., Bridges, C.B., Uyeki, T.M., Shu, B., Balish, A., Xu, X., Lindstrom, S., Gubareva, L.V., Deyde, V., Garten, R.J., Harris, M., Gerber, S., Vagasky, S., Smith, F., Pascoe, N., Martin, K., Dufficy, D., Ritger, K., Conover, C., Quinlisk, P., Klimov, A., Bresee, J.S., Finelli, L. 2009. Triple-reassortant swine influenza A (H1) in humans in the United States, 2005–2009. N Engl J Med 360, 2616–2625.PubMedCrossRefGoogle Scholar
  18. [18]
    Sivashankari, S., Shanmughavel, P. 2007. Comparative genomics - A perspective. Bioinformation 1, 376–378.PubMedCrossRefGoogle Scholar
  19. [19]
    Smith, G.J., Vijaykrishna, D., Bahl, J., Lycett, S.J., Worobey, M., Pybus, O. 2009. Origin and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature 459, 1122–1126.PubMedCrossRefGoogle Scholar
  20. [20]
    Suzuki, Y. 2006. Natural selection on the Influenza virus genome. Mol Biol Evol 23, 1902–1911.PubMedCrossRefGoogle Scholar
  21. [21]
    Tamura, K., Dudley, J., Nei, M., Kumar, S. 2007. MEGA 4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24, 1596–1599.PubMedCrossRefGoogle Scholar
  22. [22]
    Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28, 2731–2739.PubMedCrossRefGoogle Scholar
  23. [23]
    Tamuri, A.U., Reis, D.M., Hay, A.J., Goldstein, R.A. 2009. Identifying changes in selective constraints: Host shifts in influenza. PLoS Comput Biol 5, e1000564.PubMedCrossRefGoogle Scholar
  24. [24]
    Thompson, J.D., Higgins, D.G., Gibson, T.J. 1994. Clustal W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res 22, 4673–4680.PubMedCrossRefGoogle Scholar
  25. [25]
    Van-Reeth, K., Nicoll, A. 2009. A human case of swine influenza virus infection in Europe-implication for human health and research. Euro Surveill 14, 19124.PubMedGoogle Scholar
  26. [26]
    Webby, R.J., Webster, R.G. 2001. Emergence of influenza A viruses. Philos Trans R Soc Lond B Biol Sci 356, 1817–1828.PubMedCrossRefGoogle Scholar
  27. [27]
    Webster, R.G., Peiris, M., Chen, H., Guan, Y. 2006. H5N1 outbreaks and enzootic influenza. Emerg Infect Dis 12, 3–8.PubMedCrossRefGoogle Scholar
  28. [28]
    Zambon, M.C. 2001. The pathogenesis of influenza in human. Rev Med Virol 11, 227–241.PubMedCrossRefGoogle Scholar

Copyright information

© International Association of Scientists in the Interdisciplinary Areas and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ramaiah Arunachalam
    • 1
  • Kanniah Paulkumar
    • 1
  • Gurusamy Annadurai
    • 1
  1. 1.Environmental Nanotechnology Division, Sri Paramakalyani Centre for Environmental SciencesManonmaniam Sundaranar UniversityAlwarkurichiIndia

Personalised recommendations