SAGPAR: Structural Grammar-based automated pathway reconstruction

Article

Abstract

In-silico metabolic engineering is a very useful branch of systems biology for modeling, analysis and prediction of various outcomes of metabolic pathways. It can also be used for detecting interactions and dynamics within a network. Various protocols have been proposed for modeling a pathway. But most of these protocols have various disadvantages and shortcomings with respect to automated pathway modeling and analysis. In the present article, we have proposed a novel algorithm for automated pathway reconstruction. We have also made a comparative study of our algorithm with other standard protocols and discussed its advantages over others. We present StructurAl Grammar-based automated PAthway Reconstruction (SAGPAR), a fast and robust algorithm that generates any metabolic pathway using some given structural representations of metabolites. Users can model any pathway based on some pre-required features that are asked as an input by the algorithm. The algorithm also takes into considerations various thermodynamic thresholds and structural properties while modeling a pathway. The given algorithm has been tested on the standard pathway datasets of 25 pathways of Mycoplasma pneumoniae M129 and 24 pathways of Homo sapiens. The dataset is taken from KEGG and PubChem Compound data repositories. SAGPAR performs much better than some already present metabolic pathway analysis tools like Copasi, PHT, Gepasi, Jarnac and Path-A.

Key words

boolean connectivities graph lavenshtein distance perturbation similarity SMILES topological index 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12539_2012_119_MOESM1_ESM.doc (1 mb)
Supplementary material, approximately 1.01 MB.

References

  1. [1]
    Assenov, Y., Schelhorn, S.E., Lengauer, T., Albrecht, M., Ramrez, F. 2008. Computing topological parameters of biological networks. Bioinformatics 24 (Suppl 2), 282–284.PubMedCrossRefGoogle Scholar
  2. [2]
    Balaban, A.T., Devillers, J. 2007. Topological Indices and Related Descriptors in QSAR and QSPR. CRC Press, Florida.Google Scholar
  3. [3]
    Boncher, D. 1983. Information Theoretic Indices for Characterization of Chemical Structures. Research Studies Press, Hertfordshire.Google Scholar
  4. [4]
    Briem, H., Kuntz, I.D. 1996. Molecular similarity based on DOCK generated fingerprints. J Med Chem 39(Suppl 17), 3401–3408.PubMedCrossRefGoogle Scholar
  5. [5]
    Davies, J.W., Glick, M., Deng, Z., Nettles, J.H., Bender, A., Jenkins, J.L. 2006. Bayes affinity fingerprints’ improve retrieval rates in virtual screening and define orthogonal bioactivity space: When are multitarget drugs a feasible concept? J Chem In Model 46, 2445–2456.CrossRefGoogle Scholar
  6. [6]
    De Luca, V., Romeo, J.T., Ibrahim, R., Varin, L. 2000. Evolution of Metabolic Pathways (Recent Advances in Phytochemistry). Pergamon, Oxford.Google Scholar
  7. [7]
    Diestel, R. 2005. Graph Theory. Springer, Heidelberg.Google Scholar
  8. [8]
    EI-Basil, S. 2008. Combinatorial properties of graphs and groups of physicochemical interest. Comb Chem High Throughput Screen 11 (Suppl 9), 707–722.CrossRefGoogle Scholar
  9. [9]
    Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., Singhal, M., Xu, L., Mendes, P., Kummer, U. 2006. COPASI — a COmplex PAthway SImulator. Bioinformatics 22 (Suppl 24), 3067–3074.PubMedCrossRefGoogle Scholar
  10. [10]
    Kanehisa, M., Kawashima, S., Okuno, Y., Hattori, M., Goto, S. 2004. The kegg resource for deciphering the genome. Nucleic Acids Res 32, D277–D280.PubMedCrossRefGoogle Scholar
  11. [11]
    Kerber, A., Laue, R., Meringer, M., Rucker, C. 2007. Molecules in silico — a gradescription of chemical reactions. J Chem Inf Model 47(Suppl 3), 805–817.PubMedCrossRefGoogle Scholar
  12. [12]
    Kitano, H. 2001. Foundations of Systems Biology. MIT Press, Cambridge.Google Scholar
  13. [13]
    Klipp, E. 2005. Systems Biology in Practice: Concepts, Implementation And Application. John Wiley & Sons Inc., New York.CrossRefGoogle Scholar
  14. [14]
    Mendes, P. 1993. GEPASI: A software package for modelling the dynamics, steady states and control of biochemical and other systems. Comput Appl Biosci 9(Suppl 5), 63–71.Google Scholar
  15. [15]
    Moorthy, K. 2007. Fundamentals of Biochemical Calculations. CRC Press, Florida.Google Scholar
  16. [16]
    Navarro, G. 2001. A guided tour to approximate string matching. ACM Computing Surveys 33(Suppl 1), 3188.Google Scholar
  17. [17]
    Oltvai, Z.N., Barabasi, A.L. 2004. Network biology: Understanding the cell’s functional organization. Nat Rev Genet 5, 101–113.PubMedCrossRefGoogle Scholar
  18. [18]
    Palsson, B. 2006. Systems Biology: Properties of Reconstructed Networks. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  19. [19]
    Periwal, S., Szallasi, Z., Stelling, J., Alon, V. 2006. Systems Modeling in Cellular Biology. MIT Press, Cambridge.Google Scholar
  20. [20]
    Pireddu, L., Szafron, D., Lu, P., Greiner, R. 2006. The Path-A metabolic pathway prediction web server. Nucleic Acids Res 34, W714–W719.PubMedCrossRefGoogle Scholar
  21. [21]
    Pogliani, L., de Julian Ortiz, J.V., Galvez, J., Garcia-Domenech, R. 2008. Some trends in chemical graph theory. Chem Rev 108 (Suppl 3), 1127–1169.PubMedGoogle Scholar
  22. [22]
    Rahman, S.A., Advani, P., Schunk, R., Schrader, R., Schomburg, D. 2005. Metabolic pathway analysis web service (Pathway Hunter Tool at CUBIC). Bioinformatics 21, 1189–1193.PubMedCrossRefGoogle Scholar
  23. [23]
    Rouvray, D.H. 1986. Mathematics and Computational Concepts in Chemistry. Horwood Publishers, Chichester.Google Scholar
  24. [24]
    Sauro, H.M. 2000. Jarnac: A system for interactive metabolic analysis. Stellenbosch University Press, Stellenbosch.Google Scholar
  25. [25]
    Shivakumar, N., Narendran, B., Agarwal, P., Srreran, C. 1995. The concord algorithm for synchronization of networked multimedia streams. In: 2nd IEEE International Conference on Multimedia Computing and System’95 (ICMCS’95), Washington DC, 31–40.Google Scholar
  26. [26]
    Steinbeck, C., Kuhn, S., Horlacher, O., Luttmann, E., Willighagen, E., Han, Y. 2003. The chemistry development kit (cdk): An open-source java library for chemo and bioinformatics. J Chem Inf Comput Sci 43, 493–500.PubMedCrossRefGoogle Scholar
  27. [27]
    Tada, M., Shijima, H., Nakamura, M. 2003. Smilestype free radical rearrangement of aromatic sulfonates and sulfonamides: Syntheses of arylethanols and arylethylamines. Org Biomol Chem 1(Suppl 14), 2499–2505.PubMedCrossRefGoogle Scholar
  28. [28]
    West, D. 1996. Introduction to Graph Theory. Prentice Hall, New Jersey.Google Scholar
  29. [29]
    Westerhoff, H., Alberghina, L. 2005. Systems Biology: Definitions and Perspectives. Springer, New York.Google Scholar
  30. [30]
    Whittle, M., Klaffke, W., van Noort, P., Willett, P. 2003. Evaluation of similarity measures for searching the dictionary of natural products database. J Chem Inf Comput Sci 43, 449–457.PubMedCrossRefGoogle Scholar
  31. [31]
    Xue, L., Stahura, F.L., Bajorath, J., Godden, J.W. 2003. Design and evaluation of a molecular fingerprint involving the transformation of property descriptor values into a binary classification scheme. J Chem Inf Comput Sci 43, 1151–1157.PubMedCrossRefGoogle Scholar

Copyright information

© International Association of Scientists in the Interdisciplinary Areas and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Biotechnology and BioinformaticsDr DY Patil UniversityNavi MumbaiIndia
  2. 2.Machine Intelligence UnitIndian Statistical InstituteKolkataIndia

Personalised recommendations