Docking studies towards exploring antiviral compounds against envelope protein of yellow fever virus

  • Amineni UmamaheswariEmail author
  • Manne Muni Kumar
  • Dibyabhaba Pradhan
  • Hemanthkumar Marisetty


Yellow fever is among one of the most lethal viral diseases for which approved antiviral therapies were yet to be discovered. Herein, functional assignment of complete YFV proteome was done through support vector machine. Major envelope (E) protein that mediates entry of YFV into host cell was selected as a potent molecular target. Three dimensional structure of the molecular target was predicted using Modeller9v7. The model was optimized in Maestro9.0 applying OPLS AA force field and was evaluated using PROCHECK, ProSA, ProQ and Profile 3D. The BOG pocket residues Val48, Glu197, Thr200, Ile204, Thr265, Thr268 and Gly278 were located in YFV E protein using SiteMap2.3. More than one million compounds of Ligandinfo Meta database were explored using a computational virtual screening protocol targeting BOG pocket of the E protein. Finally, ten top ranked lead molecules with strong binding affinity to BOG pocket of YFV E protein were identified based on XP Gscore. Drug likeliness and comparative bioactivity analysis for these leads using QikProp3.2 had shown that these molecules would have the potential to act as better drug. Thus, the 10 lead molecules suggested in the present study would be of interest as promising starting point for designing antiviral compound against yellow fever.

Key words

yellow fever virus envelope protein homology modeling virtual screening antiviral compound 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12539_2011_64_MOESM1_ESM.pdf (71 kb)
Supplementary material, approximately 71.3 KB.


  1. [1]
    Allison, S.L., Schalich, J., Stiasny, K., Mandl, C.W., Heinz, F.X. 2001. Mutational evidence for an internal fusion peptide in flavivirus envelope protein E. J Virol 75, 4268–4275.PubMedCrossRefGoogle Scholar
  2. [2]
    Allsop, A.E. 1998. New antibiotic discovery, novel screens, novel targets and impact of microbial genomics. Curr Opin Microbiol 64, 530–534.CrossRefGoogle Scholar
  3. [3]
    Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.PubMedCrossRefGoogle Scholar
  4. [4]
    Anderson, R. 2003. Manipulation of cell surface molecules by flaviviruses. Adv Virus Res 59, 229–274.PubMedCrossRefGoogle Scholar
  5. [5]
    Beasley, D.W., Aaskov, J.G. 2001. Epitopes on the Dengue 1 virus envelope protein recognized by neutralizing IgM monoclonal antibodies. Virology 279, 447–458.PubMedCrossRefGoogle Scholar
  6. [6]
    Bell, J.R., Kinney, R.M., Trent, D.W., Lenches, E.M., Dalgarno, L., Strauss, J.H. 1985. Amino-terminal amino acid sequences of structural proteins of three flaviviruses. Virology 143, 224–229.PubMedCrossRefGoogle Scholar
  7. [7]
    Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E. 2000. The Protein Data Bank. Nucleic Acids Res 28, 235–242.PubMedCrossRefGoogle Scholar
  8. [8]
    Boege, U., Heinz, F.X., Wengler, G., Kunz, C. 1983. Amino acid compositions and amino-terminal sequences of the structural proteins of a flavivirus, European Tick-Borne encephalitis virus. Virology 126, 651–657.PubMedCrossRefGoogle Scholar
  9. [9]
    Bressanelli, S., Stiasny, K.S.L., Allison, S.L., Stura, E.A., Duquerroy, S., Lescar, J., Heinz, F.X., Rey, F.A. 2004. Structure of a flavivirus envelope glycoprotein in its low-pH-induced membrane fusion conformation. EMBO J 23, 728–738.PubMedCrossRefGoogle Scholar
  10. [10]
    Brooks, W., Daniel, K., Sung, S., Guida, W. 2008. Computational validation of the importance of absolute stereochemistry in virtual screening. J Chem Inf Model 48, 639–645.PubMedCrossRefGoogle Scholar
  11. [11]
    Cai, C.Z., Han, Z.L., Chen, X., Chen, Y.Z. 2003. SVMProt: Web-based support vector machine software for functional classification of a protein from its primary sequence. Nucleic Acids Res 31, 3692–3697.PubMedCrossRefGoogle Scholar
  12. [12]
    Carver, T., Bleasby, A. 2003. The design of Jemboss: a graphical user interface to EMBOSS. Bioinformatics 19, 1837–1843.PubMedCrossRefGoogle Scholar
  13. [13]
    Castle, E., Nowak, T., Leidner, U., Wengler, G., Wengler, G. 1985. Sequence analysis of the viral core protein and the membrane-associated proteins V1 and NV2 of the flavivirus West Nile virus and of the genome sequence for these proteins. Virology 145, 227–236.PubMedCrossRefGoogle Scholar
  14. [14]
    Castrignano, T., de Meo, P.D.O., Cozzetto, D., Talamo, I.G., Tramontano, A. 2006. The PMDB Protein Model Database. Nucleic Acids Res 34, 306–309.CrossRefGoogle Scholar
  15. [15]
    Cecilia, D., Gould, E.A. 1991. Nucleotide changes responsible for loss of neuroinvasiveness in Japanese encephalitis virus neutralization resistant mutants. Virology 181, 70–77.PubMedCrossRefGoogle Scholar
  16. [16]
    Crill, W.D., Roehrig, J.T. 2001. Monoclonal antibodies that bind to domain III of Dengue virus E glycoprotein are the most efficient blockers of virus adsorption to Vero cells. Virology 75, 7769–7773.CrossRefGoogle Scholar
  17. [17]
    Deubel, V., Kinney, R.M., Trent, D.W. 1986. Nucleotide sequence and deduced amino acid sequence of the structural proteins of Dengue type 2 virus, Jamaican genotype. Virology 155, 365–377.PubMedCrossRefGoogle Scholar
  18. [18]
    Eswar, N., Eramian, D., Webb, B., Shen, M.Y., Sali, A. 2008. Protein structure modeling with MODELLER. Methods Mol Biol 426, 145–159.PubMedCrossRefGoogle Scholar
  19. [19]
    Friesner, R.A., Banks, J.L., Murphy, R.B., Halgren, T.A., Klicic, J.J., Mainz, D.T., Repasky, M.P., Knoll, E.H., Shelley, M., Perry, J.K., Shaw, D.E., Francis, P., Shenkin, P.S. 2004. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47, 1739–1749.PubMedCrossRefGoogle Scholar
  20. [20]
    Friesner, R.A., Murphy, R.B., Repasky, M.P., Frye, L.L., Greenwood, J.R., Halgren, T.A., Sanschagrin, P.C., Mainz, D.T. 2006. Extra precision glide docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 49, 6177–6196.PubMedCrossRefGoogle Scholar
  21. [21]
    Goncalves, R.B., Mendes, Y.S., Soares, M.R., Katpally, U., Smith, T.J., Silva, J.L., Oliveira, A.C. 2007. VP4 protein from human rhinovirus 14 is released by pressure and locked in the capsid by the antiviral compound WIN. J Mol Biol 366, 295–306.PubMedCrossRefGoogle Scholar
  22. [22]
    Grotthuss, M.V., Pas, J., Rychlewski, L. 2003. Ligand-Info, searching for similar small compounds using index profiles. Bioinformatics 19, 1041–1042.CrossRefGoogle Scholar
  23. [23]
    Halgren, T.A., Murphy, R.B., Friesner, R.A., Beard, H.S., Frye, L.L., Pollard, W.T., Banks, J.L. 2004. Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47, 1750–1759.PubMedCrossRefGoogle Scholar
  24. [24]
    Hasegawa, H., Yoshida, M., Shiosaka, T., Fujita, S., Kobayashi, Y. 1992. Mutations in the envelope protein of Japanese encephalitis virus affect entry into cultured cells and virulence in mice. Virology 191, 158–165.PubMedCrossRefGoogle Scholar
  25. [25]
    Heinz, F.X. 1986. Epitope mapping of flavivirus glycoproteins. Adv Virus Res 31, 103–168.PubMedCrossRefGoogle Scholar
  26. [26]
    Heinz, F.X., Allison, S.A. 2000. Structures and mechanisms in flavivirus fusion. Adv Virus Res 55, 231–269.PubMedCrossRefGoogle Scholar
  27. [27]
    Hurrelbrink, R.J., McMinn, P.C. 2001. Attenuation of murray valley encephalitis virus by site-directed mutagenesis of the hinge and putative receptor-binding regions of the envelope protein. J Virology 75, 7692–7702.PubMedCrossRefGoogle Scholar
  28. [28]
    James, W. 2007. Aptamers in the virologists’ toolkit. J Gen Virol 88, 351–364.PubMedCrossRefGoogle Scholar
  29. [29]
    Jiang, W.R., Lowe, A., Higgs, S., Reid, H., Gould, E.A. 1993. Single amino acid codon changes detected in louping ill virus antibody-resistant mutants with reduced neurovirulence. J Gen Virol 74, 931–935.PubMedCrossRefGoogle Scholar
  30. [30]
    Jorgensen, W.L., Maxwell, D.S., Tirado-Rives, J. 1996. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118, 11225–11236.CrossRefGoogle Scholar
  31. [31]
    Khromykha, A.A., Harveya, T.J., Abediniab, M., Westaway, E.G. 1996. Expression and purification of the seven nonstructural proteins of the flavivirus Kunjin in the E. coli and the baculovirus expression systems. J Virol Methods 61, 47–58.CrossRefGoogle Scholar
  32. [32]
    Laskowski, R.A., MacArthur, M.W., Moss, D.S., Thornton, J.M. 1993. PROCHECK: A program to check the stereochemical quality of protein structures. J Appl Crystallogr 26, 283–291.CrossRefGoogle Scholar
  33. [33]
    Lee, E., Lobigs, M. 2000. Substitutions at the putative receptor binding site of an encephalitic flavivirus alter virulence and host cell tropism and reveal a role for glycosaminoglycans in entry. J Virol 74, 8867–8875.PubMedCrossRefGoogle Scholar
  34. [34]
    Li, Z., Khaliq, M., Zhou, Z., Post, C.B., Kuhn, R.J., Cushman, M. 2008. Design, synthesis, and biological evaluation of antiviral agents targeting flavivirus envelope proteins. J Med Chem 51, 4660–4671.PubMedCrossRefGoogle Scholar
  35. [35]
    Lobigs, M., Usha, R., Nestorowicz, A., Marshall, I.D., Weir, R.C., Dalgarno, L. 1990. Host cell selection of Murray Valley encephalitis virus variants altered at an RGD sequence in the envelope protein and in mouse virulence. Virology 176, 587–595.PubMedCrossRefGoogle Scholar
  36. [36]
    Maestro v9.0, 2009. Schrodinger, LLC, Portland, OR.Google Scholar
  37. [37]
    Mandl, C.W., Allison, S.L., Holzmann, H., Meixner, T., Heinz, F.X. 2000. Attenuation of tick-borne encephalitis virus by structure based site-specific mutagenesis of a putative flavivirus receptor binding site. J Virol 74, 9601–9609.PubMedCrossRefGoogle Scholar
  38. [38]
    Modis, Y., Ogata, S., Clements, D., Harrison, S.C. 2003. A ligand-binding pocket in the Dengue virus envelope glycoprotein. Proc Natl Acad Sci USA 100, 6986–6991.PubMedCrossRefGoogle Scholar
  39. [39]
    Modis, Y., Ogata, S., Clements, D., Harrison, S.C. 2004. Structure of the Dengue virus envelope protein after membrane fusion. Nature 427, 313–319.PubMedCrossRefGoogle Scholar
  40. [40]
    Monath, T.P. 1986. Pathology of the flaviviruses. In: Schlesinger, S., Schlesinger, M.J. (eds) The Togaviridae and Flaviviridae. Academic Press Inc, New York, 375–440.Google Scholar
  41. [41]
    Nayak, V., Dessau, M., Kucera, K., Anthony, K., Ledizet, M., Modis, Y. 2009. Crystal structure of Dengue virus type 1 envelope protein in the postfusion conformation and its implications for membrane fusion. J Virol 83, 4338–4344.PubMedCrossRefGoogle Scholar
  42. [42]
    Oldstone, M.B.A. 2000. Viruses, Plagues, and History. Oxford University Press, UK.Google Scholar
  43. [43]
    op de Beeck, A., Rouillé, Y., Caron, M., Duvet, S., Dubuisson, J. 2004. The transmembrane domains of the prM and E Proteins of yellow fever virus are endoplasmic reticulum localization signals. J Virol 78, 12591–12602.CrossRefGoogle Scholar
  44. [44]
    Rey, F.A., Heinz, F.X., Mandl, C., Kunz, C., Harrison, S.C. 1995. The envelope glycoprotein from tick-borne encephalitis virus at 2 A0 resolution. Nature 375, 291–298.PubMedCrossRefGoogle Scholar
  45. [45]
    Rice, C.M. 1996. Flaviviridae: The viruses and their replication. In: Fields, B.N., Knipe, D.M., Howley, P.M. (eds) Lippincott-Raven Publishers, Philadelphia, 931–960.Google Scholar
  46. [46]
    Rice, C.M., Strauss, J.H. 1986. Structure of the flavivirus genome. In: Schlesinger, S., Schlesinger, M.J. (eds), The Togaviridae and Flaviviridae. Academic Press Inc, New York, 279–326.Google Scholar
  47. [47]
    Roehrig, J.T. 1997. Immunochemistry of the Dengue viruses. In: Gubler, D.J., Kuno, G. (eds), Dengue and Dengue Hemorrhagic Fever. CAB International, New York, 199–219.Google Scholar
  48. [48]
    Sali, A., Blundell, T.L. 1993. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234, 779–815.PubMedCrossRefGoogle Scholar
  49. [49]
    Schmaljohn, A.L., McClain, D. 1996. Alphaviruses (togaviridae) and flaviviruses (flaviviridae). In: Baron, S. (ed), Medical Microbiology. Univ of Texas Medical Branch.Google Scholar
  50. [50]
    Sekhar, P.N., Reddy, L.A., De, Maeyer, M., Kumar, K.P., Srinivasulu, Y.S., Sunitha, M.S., Sphoorthi, I.S., Jayasree, G., Rao, A.M., Kothekar, V.S., Narayana, P.V., Kishor, P.B. 2009. Genome wide analysis and comparative docking studies of new diaryl furan derivatives against human cyclooxygenase-2, lipoxygenase, thromboxane synthase and prostacyclin synthase enzymes involved in inflammatory pathway. J Mol Graph Model 28, 313–329.PubMedCrossRefGoogle Scholar
  51. [51]
    Speight, G., Coia, G., Parker, M.D., Westaway, E.G. 1988. Gene mapping and positive identification of the non-structural proteins NS2A, NS2B, NS3, NS4B and NS5 of the flavivirus Kunjin and their cleavage sites. J Gen Virol 69, 23–34.PubMedCrossRefGoogle Scholar
  52. [52]
    Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgins, D.G. 1997. The CLUSTALX windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.PubMedCrossRefGoogle Scholar
  53. [53]
    Umamaheswari, A., Pradhan, D., Hemanthkumar, M. 2010. Virtual screening for potential inhibitors of homology modeled Leptospira interrogans MurD ligase. J Chem Biol (in press). doi: 10.1007/s12154-010-0040-8.Google Scholar
  54. [54]
    Wallner, B., Elofsson, A. 2003. Can correct protein models be identified? Protein Sci 12, 1073–1086.PubMedCrossRefGoogle Scholar
  55. [55]
    Wiederstein, M., Sippl, M.J. 2007. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35, 407–410.CrossRefGoogle Scholar
  56. [56]
    Zhou, Z., Khaliq, M., Suk, J.E., Patkar, C., Li, L., Kuhn, R.J., Post, C.B. 2008. Antiviral compounds discovered by virtual screening of small-molecule libraries against dengue virus E protein. ACS Chem Biol 3, 765–775.PubMedCrossRefGoogle Scholar

Copyright information

© International Association of Scientists in the Interdisciplinary Areas and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Amineni Umamaheswari
    • 1
    Email author
  • Manne Muni Kumar
    • 1
  • Dibyabhaba Pradhan
    • 1
  • Hemanthkumar Marisetty
    • 2
  1. 1.SVIMS Bioinformatics Centre, Department of BioinformaticsSVIMS UniversityTirupatiIndia
  2. 2.Agricultural Research Station, PerumallapalleTirupatiIndia

Personalised recommendations