Advertisement

Cisplatin interaction with amino acids cysteine and methionine from gas phase to solutions with constant pH

  • Tomáš Zimmermann
  • Jaroslav V. BurdaEmail author
Article

Abstract

This work is focused on the computational studies of reactions of hydrated forms of cisplatin with sulphur-containing amino acids cysteine and methionine. First, the appropriate model for solvation of the examined complexes was searched for. The suggested procedure employs the B3LYP density functional, 6-311++G(2df,2pd) basis set with Stuttgart-Dresden pseudopotentials on heavy atoms, the D-PCM solvation model and the UAKS cavity which uses more realistic NPA partial charges instead of formal partial charges for platinum ligands. In the second part this model is applied to the evaluation of the Legendre transformed reaction Gibbs free energy of cisplatin with cysteine and methionine in solution at constant pH.

Key words

cisplatin cysteine methionine DFT calculations constant pH 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Albert, A., Serjeant, E.P. 1984. The determination of ionization constants. New Your: Chapman and Hall.Google Scholar
  2. [2]
    Alberty, R.A., Oppenheim, I. 1988. Fundamental equation for systems in chemical equilibrium. The Journal of Chemical Physics 89, 3689–3693.CrossRefGoogle Scholar
  3. [3]
    Alberty, R.A. 2001. Use of Legendre transforms in chemical thermodynamics — (IUPAC Technical Report). Pure and Applied Chemistry 73, 1349–1380.CrossRefGoogle Scholar
  4. [4]
    Andrae, D., Haussermann, U., Dolg, M., Stoll, H., Preuss, H. 1990. Energy-adjusted abinitio pseudopotentials for the 2nd and 3rd row transition-tlements. Theoretica Chimica Acta 77, 123–141.CrossRefGoogle Scholar
  5. [5]
    Appleton, T.G., Connor, J.W., Hall, J.R. 1988. S,O- versus S,N-chelation in the reactions of the cis-diamminediaquaplatinum( II) cation with methionine and S-methylcysteine. Inorg Chem 27, 130–137.CrossRefGoogle Scholar
  6. [6]
    Appleton, T.G., Connor, J.W., Hall, J.R., Prenzler, P.D. 1989. NMR study of the reactions of the cis-diamminediaquaplatinum( II) cation with glutathione and amino acids containing a thiol group. Inorg Chem 28, 2030–2037.CrossRefGoogle Scholar
  7. [7]
    Arner, E.S.J., Nakamura, H., Sasada, T., Yodoi, J., Holmgren, A., Spyrou, G. 2001. Analysis of the inhibition of mammalian thioredoxin, thioredoxin reductase, and glutaredoxin by cis-diamminedichloroplatinum (II) and its major metabolite, the glutathione-platinum complex. Free Radical Biology and Medicine 31, 1170–1178.CrossRefPubMedGoogle Scholar
  8. [8]
    Baik, M.H, Friesner, R.A., Lippard, S.J. 2002. Theoretical study on the stability of N-glycosyl bonds: Why does N7-platination not promote depurination? J Am Chem Soc 124, 4495–4503.CrossRefPubMedGoogle Scholar
  9. [9]
    Baik, M.H., Friesner, R.A., Lippard, S.J. 2003. Theoretical study of cisplatin binding to purine bases: Why does cisplatin prefer guanine over adenine? J Am Chem Soc 125, 14082–14092.CrossRefPubMedGoogle Scholar
  10. [10]
    Barone, V., Cossi, M. 1998. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. Journal of Physical Chemistry A 102, 1995–2001.CrossRefGoogle Scholar
  11. [11]
    Barone, V., Cossi, M., Tomasi, J. 1997. A new definition of cavities for the computation of solvation free energies by the polarizable continuum model. J Chem Phys 107, 3210–3218.CrossRefGoogle Scholar
  12. [12]
    Bergner, A., Dolg, M., Kuchle, W., Stoll, H., Preuss, H. 1993. Ab-initio energy-adjusted Ppseudopotentials for elements of groups 13–17. Molecular Physics 80, 1431–1441.CrossRefGoogle Scholar
  13. [13]
    Burda, J.V., Leszczynski, J. 2003. How strong can the bend be on a DNA helix from cisplatin? DFT and MP2 quantum chemical calculations of cisplatinbridged DNA purine bases. Inorg Chem 42, 7162–7172.CrossRefPubMedGoogle Scholar
  14. [14]
    Burda, J.V., Šponer, J., Hrabáková, J., Zeizinger, M., Leszczynski, J. 2003. The influence of N-7 guanine modifications on the strength of Watson-Crick base pairing and guanine N-1 acidity: Comparison of gas-phase and condensed-phase trends. J Phys Chem B 107, 5349–5356.CrossRefGoogle Scholar
  15. [15]
    Burda, J.V., Šponer, J., Leszczynski, J. 2000. Interaction of square platinum(II) complexes with guanine and adenine. Quantum chemical ab initio study of metalated tautomer forms. J Biol Inorg Chem 5, 178–188.CrossRefPubMedGoogle Scholar
  16. [16]
    Burda, J.V., Šponer, J., Leszczynski, J. 2001. The influence of square planar platinum complexes on DNA base pairing. An ab initio DFT study. Phys Chem Chem Phys 3, 4404–4411.CrossRefGoogle Scholar
  17. [17]
    Burda, J.V., Zeizinger, M., Leszczynski, J. 2004. Activation barriers and rate constants for hydration of platinum and palladium square-planar complexes: An ab initio study. J Chem Phys 120, 1253–1262.CrossRefPubMedGoogle Scholar
  18. [18]
    Burda, J.V., Zeizinger, M., Leszczynski, J. 2005. Hydration process as an activation of trans- and cisplatin complexes in anticancer treatment. DFT and ab initio computational study of thermodynamic and kinetic parameters. J Comput Chem 29, 907–914.CrossRefGoogle Scholar
  19. [19]
    Burda, J.V., Zeizinger, M., Šponer, J., Leszczynski, J. 2000. Hydration of cis- and trans-platin: A pseudopotential treatment in the frame of a G3-type theory for platinum complexes. J Chem Phys 113, 2224–2232.CrossRefGoogle Scholar
  20. [20]
    Chang, G.R., Zhou, L.X., Chen, D. 2006. Theoretical investigation of detailed thermodynamic character of possible difunctional adducts model. Chinese J Structural Chem 25, 533–542.Google Scholar
  21. [21]
    Chval, Z., Šíp, M. 2003. Transition states of cisplatin binding to guanine and adenine: ab initio reactivity study. Collection Czechoslovak Chem Communications 68, 1105–1118.CrossRefGoogle Scholar
  22. [22]
    Costa, L.A., Hambley, T.W., Rocha, W.R., Almeida, W.B., Dos Santos, H.F. 2006. Kinetics and structural aspects of the cisplatin interactions with guanine: A quantum mechanical description. Int J Quant Chem 106, 2129–2144.CrossRefGoogle Scholar
  23. [23]
    Costa, L.A.S., Rocha, W.R., De Almeida, W.B., Dos Santos, H.F. 2003. The hydrolysis process of the cis-dichloro( ethylenediamine)platinum(II): A theoretical study. J Chem Phys 118, 10584–10592.CrossRefGoogle Scholar
  24. [24]
    Costa, L.A.S., Rocha, W.R., De Almeida, W.B., Dos Santos, H.F. 2004. The solvent effect on the aquation processes of the cis-dichloro (ethylenediammine) platinum (II) using continuum solvation models. Chem Phys Letters 387, 182–187.CrossRefGoogle Scholar
  25. [25]
    Coste, F., Malinge, J.M., Serre, L., Shepard, W., Roth, M., Leng, M., Zelwer, C. 1999. Crystal structure of a double-stranded DNA containing a cisplatin interstrand cross-link at 1.63 angstrom resolution: Hydration at the platinated site. Nucleic Acids Res 27, 1837–1845.CrossRefPubMedGoogle Scholar
  26. [26]
    Cramer, C.J., Truhlar, D.G. 1999. Implicit solvation models: Equilibria, structures, spectra, and dynamics. Chem Rev 99, 2161–2200.CrossRefPubMedGoogle Scholar
  27. [27]
    Da Silva, V.J., Costa, L.A.S., Dos Santos, H.F. 2008. Ab initio reaction path for cisplatin interaction with L-cysteine and L-methionine. Int J Quantum Chem 108, 401–414.CrossRefGoogle Scholar
  28. [28]
    Dal Peraro, M., Ruggerone, P., Raugei, S., Gervasi, F.L., Carloni, P. 2007. Investigating biological systems using first principles Car-Parrinello molecular dynamics simulations. Current Opinion in Structural Biology, 149–156.Google Scholar
  29. [29]
    Dawson, R.M.C., Elliot, D.C., Elliot, W.H., Jones, K.M. 1959. Data for Biochemical Research. Clarendon Press, Oxford.Google Scholar
  30. [30]
    Deubel, D.V. 2002. On the competition of the purine bases, functionalities of peptide side chains, and protecting agents for the coordination sites of dicationic cisplatin derivatives. J Am Chem Soc 124, 5834–5842.CrossRefPubMedGoogle Scholar
  31. [31]
    Deubel, D.V. 2004. Factors governing the kinetic competition of nitrogen and sulfur ligands in cisplatin binding to biological targets. J Am Chem Soc 126, 5999–6004.CrossRefPubMedGoogle Scholar
  32. [32]
    Dos Santos, H.F., Marcial, B.L., De Miranda, C.F., Costa, L.A.S., De Almeida, W.B. 2006. Structure and properties of the 5a,6-anhydrotetracyclineplatinum( II) dichloride complex: A theoretical ab initio study. J Inorg Biochem 100, 1594–1605.CrossRefPubMedGoogle Scholar
  33. [33]
    Eastman, A. 1999. The mechanism of action of cisplatin: From adducts to apoptosis. In: Lippert, B. (Ed.) Cisplatin. Wiley-VCH, Weinheim, 111–134.CrossRefGoogle Scholar
  34. [34]
    Elizondo-Riojas, M.A., Kozelka, J. 2001. Unrestrained 5 ns molecular dynamics simulation of a cisplatin-DNA 1, 2-GG adduct provides a rationale for the NMR features and reveals increased conformational flexibility at the platinum binding site. J Molecular Biology 314, 1227–1243.CrossRefGoogle Scholar
  35. [35]
    Erturk, H., Hofmann, A., Puchta, R., van Eldik, R. 2007. Influence of the bridging ligand on the substitution behaviour of dinuclear Pt(II) complexes. An experimental and theoretical approach. Dalton Transactions 22, 2295–2301.CrossRefPubMedGoogle Scholar
  36. [36]
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A.J., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., Pople, J.A. 2004. Gaussian 03, Revision B.05. Gaussian, Inc., Wallingford, CT.Google Scholar
  37. [37]
    Ginovska, B., Camaioni, D.M., Dupuis, M. 2007. Reaction pathways and excited states in H2O2+OH\HO2+H2O: A new ab initio investigation. J Chem Phys 127, 084309.CrossRefPubMedGoogle Scholar
  38. [38]
    Ginovska, B., Camaioni, D.M., Dupuis, M. 2008. The H2O2+OH\HO2+H2O reaction in aqueous solution from a charge-dependent continuum model of solvation. J Chem Phys 129, 014506.CrossRefPubMedGoogle Scholar
  39. [39]
    Ginovska, B., Camaioni, D.M., Dupuis, M., Schwerdtfeger, C.A., Gil, Q. 2008. Charge-dependent cavity radii for an accurate dielectric continuum model of solvation with emphasis on ions: Aqueous solutes with oxo, hydroxo, amino, methyl, chloro, bromo, and fluoro functionalities. J Phys Chem A 112, 10604–10613.CrossRefPubMedGoogle Scholar
  40. [40]
    Glendening, E.D., Badenhoop, J.K., Reed, A.E., Carpenter, J.E., Bohmann, J.A., Morales, C.M., Weinhold, F. 2001. NBO 5.0. Theoretical Chemistry Institute, University of Wisconsin, Madison.Google Scholar
  41. [41]
    Hao, L., Zhang, Y., Tan, H.W., Chen, G.J. 2007. Theoretical investigation of interaction between unclassical trinuclear antitumor platinum complex and DNA duplex. Chem J Chinese Universities-Chinese 28, 1160–1164.Google Scholar
  42. [42]
    Heudi, O., Cailleux, A., Allain, P. 1998. Kinetic studies of the reactivity between cisplatin and its monoaquo species with -methionine. J Inorg Biochem 71, 61–69.CrossRefGoogle Scholar
  43. [43]
    Hohage, O., Sheldrick, W.S. 2006. Cisplatin mediates selective downstream hydrolytic cleavage of Met-(Gly)(n)-His segments (n=1,2) in methionine- and histidine-containing peptides: The role of ammine loss trans to the initial Pt-S(Met) anchor in facilitating amide hydrolysis. J Inorg Biochem 100, 1506–1513.CrossRefPubMedGoogle Scholar
  44. [44]
    Ishikawa, T., Aliosman, F. 1993. Glutathione-associated cis-diamminedichloroplatinum (II) metabolism and ATP-dependent efflux from leukemia-cells-molecular characterization of glutathione-platinum complex and its biological significance. J Biological Chem 268, 20116–20125.Google Scholar
  45. [45]
    Jia, M., Qu, W., Yang, Z., Chen, G. 2005. Theoretical study on the factors that affect the structure and stability of the adduct of a new platinum anticancer drug with a duplex DNA. Int. J Modern Phys B 19, 2939–2949.CrossRefGoogle Scholar
  46. [46]
    Jung, Y., Lippard, S.J. 2007. Direct Cellular Responses to Platinum-Induced DNA Damage. Chemical Reviews 107, 1387–1407.CrossRefPubMedGoogle Scholar
  47. [47]
    Kelly, C.P., Cramer, C.J., Truhlar, D.G. 2005. SM6: A density functional theory continuum solvation model for calculating aqueous solvation free energies of neutrals, ions, and solute-water clusters. J Chem Theory Comput 6, 1133–1152.CrossRefGoogle Scholar
  48. [48]
    Klamt, A., Schuurmann, G. 1993. Cosmo — a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc -Perkin Transactions 2, 799–805.CrossRefGoogle Scholar
  49. [49]
    Lau, J.K.C., Deubel, D.V. 2006. Hydrolysis of the anticancer drug cisplatin: Pitfalls in the interpretation of quantum chemical calculations. J Chem Theory and Computation 2, 103–106.CrossRefGoogle Scholar
  50. [50]
    Legendre, F., Chottard, J.-C. 1999. Kinetics and selectivity of DNA-platination. In: Lippert, B. (Ed.) Cisplatin. Wiley-VCH, Weinheim.Google Scholar
  51. [51]
    Lempers, E.L.M., Reedijk, J. 1990. Characterization of products from chloro (diethylenetriamine) platinum (1+) chloride and S-adenosyl-L-homocysteine. Evidence for a pH-dependent migration of the platinum moiety from the sulfur atom to the amine group and vice versa. J Inorg Chem 29, 1880–1884.CrossRefGoogle Scholar
  52. [52]
    Lilley, D.M.J. 1996. Cisplatin adducts in DNA: distortion and recognition. J Biol Inorg Chem 1, 189–191.CrossRefGoogle Scholar
  53. [53]
    Lopes, J.F., Menezes, V.S.D., Duarte, H.A., Rocha, W.R., De Almeida, W.B., Dos Santos, H.F. 2006. Monte Carlo simulation of cisplatin molecule in aqueous solution. J Physical Chem B 110, 12047–12054.CrossRefGoogle Scholar
  54. [54]
    Mandic, A., Hansson, J., Linder, S., Shoshan, M.C. 2003. Cisplatin induces endoplasmic reticulum stress and nucleus-independent apoptotic signaling. Journal of Biological Chemistry 278, 9100–9106.CrossRefPubMedGoogle Scholar
  55. [55]
    Manka, S., Becker, F., Hohage, O., Sheldrick, W.S. 2004. Cisplatin-mediated selective hydrolytic cleavage of methionine-containing peptides with neighboring serine or histidine residues. J Inorg Biochem 98, 1947–1956.CrossRefPubMedGoogle Scholar
  56. [56]
    Martin, R.B. 1999. Platinum complexes and binding to N(7) and N(1) of purines. In: Lippert, B. (Ed.) Cisplatin. Wiley-VCH, Weinheim, 183–206.Google Scholar
  57. [57]
    Matsui, T., Shigeta, Y., Hirao, K. 2006. Influence of Pt complex binding on the guanine-cytosine pair: A theoretical study. Chem Physics Letters 423, 331–334.CrossRefGoogle Scholar
  58. [58]
    Meister, A. 1988. Glutathione metabolism and its selective modification. Journal of Biological Chemistry 263, 17205–17208.PubMedGoogle Scholar
  59. [59]
    Norman, R.E., Ranford, J.D., Sadler, P.J. 1992. Studies of platinum(Ii) methionine complexes — metabolites of cisplatin. Inorg Chem 31, 877–888.CrossRefGoogle Scholar
  60. [60]
    O’Dwyer, P.J., Stevenson, J.P. 1999. Clinical status of cisplatin, carboplatin, and other platinum-based antitumor drugs. In: Lippert, B. (Ed.) Cisplatin. Wiley-VCH, Weinheim, 31–72.Google Scholar
  61. [61]
    Parr, R.G., Pearson, R.G. 1983. Absolute hardness: companion parameter to absolute electronegativity. Journal of the American Chemical Society 105, 7512–7516.CrossRefGoogle Scholar
  62. [62]
    Pavelka, M., Burda, J.V. 2007. Pt-bridges in various Single-strand and double-helix DNA sequences. DFT and MP2 study of the cisplatin coordination with guanine, adenine, and cytosine. J Mol Model 13, 367–379.CrossRefPubMedGoogle Scholar
  63. [63]
    Pavelka, M., Lucas, M.F.A., Russo, N. 2007. On the hydrolysis mechanism of the second-generation anticancer drug carboplatin. Chem Eur J 13, 10108–10116.CrossRefGoogle Scholar
  64. [64]
    Pearson, R.G. 1963. Hard and soft acids and bases. Journal of the American Chemical Society 85, 3533–3539.CrossRefGoogle Scholar
  65. [65]
    Pliego Jr. JR, Riveros JM. 2002. Theoretical Calculation of pKa Using the Cluster-Continuum Model. J. Phys. Chem.; 106: 7434–7439.Google Scholar
  66. [66]
    Raber, J., Zhu, C., Eriksson, L.A. 2005. Theoretical study of cisplatin binding to DNA: The importance of initial complex stabilisation. J Phys Chem 109, 11006–11015.Google Scholar
  67. [67]
    Reedijk, J. 1999. Why does cisplatin reach guanine-N7 with competing S-donor ligands available in the cell? Chem Rev 99, 2499–2510.CrossRefPubMedGoogle Scholar
  68. [68]
    Reedijk, J., Teuben, J.M. 1999. Platinum-sulfur interactions involved in antitumor drugs, rescue agents and biomolecules. In: Lippert, B. (Ed.) Cisplatin. Wiley-VCH, Weinheim.Google Scholar
  69. [69]
    Riley, C.M., Sternson, L.A., Repta, A.J. 1983. High-performance liquid-chromatography of cisplatin. J Pharmaceutical Sciences 72, 351–355.CrossRefGoogle Scholar
  70. [70]
    Robertazzi, A., Platts, J.A. 2004. Hydrogen bonding, solvation, and hydrolysis of cisplatin: A theoretical study. J Computational Chem 25, 1060–1067.CrossRefGoogle Scholar
  71. [71]
    Robertazzi, A., Platts, J.A. 2005. Hydrogen bonding and covalent effects in binding of cisplatin to purine bases: Ab initio and atoms in molecules studies. Inorg Chem 44, 267–274.CrossRefPubMedGoogle Scholar
  72. [72]
    Robertazzi, A., Platts, J.A. 2006. A QM/MM study of cisplatin-DNA oligonucleotides: From simple models to realistic systems. Chem Eur J 12, 5747–5756.CrossRefGoogle Scholar
  73. [73]
    Rosenberg, B., Van Camp, L., Krigas, T. 1965. Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature 205, 698–699.CrossRefPubMedGoogle Scholar
  74. [74]
    Schafer, F.Q., Buettner, G.R. 2001. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radical Biology and Medicine 30, 1191–1212.CrossRefPubMedGoogle Scholar
  75. [75]
    Spiegel, K., Rothlisberger, U., Carloni, P. 2004. Cisplatin binding to DNA oligomers from hybrid Car-Parrinello/molecular dynamics simulations. J Phys Chem B 108, 2699–2707.CrossRefGoogle Scholar
  76. [76]
    Šponer, J.E., Leszczynski, J., Glahe, F., Lippert, B., Šponer, J. 2001. Protonation of platinated adenine nucleobases. Gas phase vs condensed phase picture. Inorg Chem 40, 3269–3278.CrossRefPubMedGoogle Scholar
  77. [77]
    Šponer, J.E., Sanz Miguel, J., Rodriguez-Santiago, L., Erxleben, A., Krumm, M., Sodupe, M., Šponer, J., Lippert, B. 2004. Metal mediated deamination of cytosine. Experiment and mechanistic insight from DFT calculations. Angew Chem Int Ed Engl 43, 5396–5399.CrossRefPubMedGoogle Scholar
  78. [78]
    Tissandier, M.D., Cowen, K.A., Feng, W.Y., Gundlach, E., Cohen, M.H., Earhart, A.D., Coe, J.V., Tuttle, T.R. 1998. The proton’s absolute aqueous enthalpy and gibbs free energy of solvation from cluster-Ion solvation data. J Phys Chem A 102, 7787–7794.CrossRefGoogle Scholar
  79. [79]
    Tomasi, J., Mennucci, B., Cammi, R. 2005. Quantum mechanical continuum solvation models. Chemical Reviews 105, 2999–3093.CrossRefPubMedGoogle Scholar
  80. [80]
    Tsipis, A.C., Sigalas, M.P. 2002. Mechanistic aspects of the complete set of hydrolysis and anation reactions of cis- and trans-DDP related to their antitumor activity modeled by an improved ASED-MO approach. J Mol Struct (Theochem) 584, 235–248.Google Scholar
  81. [81]
    Vrana, O., Brabec, V. 2002. L-Methionine inhibits reaction of DNA with anticancer cis-diamminedichloroplatinum( II). Biochem 41, 10994–10999.CrossRefGoogle Scholar
  82. [82]
    Wei, H.Y., Liu, Q., Lin, J., Jiang, P.J., Guo, Z.J. 2004. Fast displacement of S,N-chelated L-methionine in platinum(II) complexes by biological thiols. Inorg Chem Communications 7, 792–794.CrossRefGoogle Scholar
  83. [83]
    Williams, K.M., Rowan, C., Mitchell, J. 2004. Effect of amine ligand bulk on the interaction of methionine with platinum(II) diamine complexes. Inorg Chem 43, 1190–1196.CrossRefPubMedGoogle Scholar
  84. [84]
    Wilson, C., Scudder, M.L., Hambley, T.W., Freeman, H.C. 1992. Structures of dichloro[(S)-methionine-N,S]platinum(Ii) and chloro[glycyl-(S)-methioninato-N,N′,S] platinum(Ii) monohydrate. Acta Crystallographica Section C-Crystal Structure Communications 48, 1012–1015.CrossRefGoogle Scholar
  85. [85]
    Witte, A.B., Anestal, K., Jerremalm, E., Ehrsson, H., Arner, E.S.J. 2005. Inhibition of thioredoxin reductase but not of glutathione reductase by the major classes of alkylating and platinum-containing anticancer compounds. Free Radical Biology and Medicine 39, 696–703.CrossRefPubMedGoogle Scholar
  86. [86]
    Wysokinski, R., Hernik, K., Szostak, R., Michalska, D. 2007. Electronic structure and vibrational spectra of cis-diammine-(orotato)platinum(II), a potential cisplatin analogue: DFT and experimental study. Chem Physics 333, 37–48.CrossRefGoogle Scholar
  87. [87]
    Yang, G.S., Jin, C., Hong, J., Guo, Z.J., Zhu, L.G. 2004. Ab initio and density functional theory studies on vibrational spectra of palladium(II) and platinum( II) complexes of methionine and histidine: effect of theoretical methods and basis sets. Spectrochimica Acta Part A-Molecular And Biomolecular Spectroscopy 60, 3187–3195.CrossRefGoogle Scholar
  88. [88]
    Yotsuyanagi, T., Usami, M., Noda, Y., Nagata, M. 2002. Computational consideration of cisplatin hydrolysis and acid dissociation in aqueous media: effect of total drug concentrations. International Journal of Pharmaceutics 246, 95–104.CrossRefPubMedGoogle Scholar
  89. [89]
    Yuan, Q.H., Zhou, L.X. 2007. Hydrolysis process of the anticancer agents novel non-classical transplatinum( II) with aliphatic amines. Chinese J Structural Chem 26, 962–972.Google Scholar
  90. [90]
    Zeizinger, M., Burda, J.V., Leszczynski, J. 2004. The influence of a sugar-phosphate backbone on the cisplatin-bridged BpB models of DNA purine bases. Quantum chemical calculations of Pt(II) bonding characteristics. Phys Chem Chem Phys 6, 3585–3590.CrossRefGoogle Scholar
  91. [91]
    Zeizinger, M., Burda, J.V., Šponer, J., Kapsa, V., Leszczynski, J. 2001. A systematic ab initio study of the hydration of selected palladium square-planar complexes. A comparison with platinum analogues. J Phys Chem A 105, 8086–8092.CrossRefGoogle Scholar
  92. [92]
    Zhang, L., Zhang, Y., Tao, H.B., Sun, X.J., Guo, Z.J., Zhu, L.G. 2002. Theoretical calculation on far-infrared spectra of some palladium(II) and platinum( II) halides: Effect of theoretical methods and basis sets. J Molec Struct THEOCHEM 617, 87–97.CrossRefGoogle Scholar
  93. [93]
    Zhang, Y., Guo, Z., You, X.-Z. 2001. Hydrolysis theory for cisplatin and its analogues based on density functional studies. J Am Chem Soc 123, 9378–9387.CrossRefPubMedGoogle Scholar
  94. [94]
    Zhu, C., Raber, J., Eriksson, L.A. 2005. Hydrolysis process of the second generation platinum-based anticancer drug cis-amminedichlorocyclohexyl-amineplatinum (II). J Phys Chem B 109, 12195–12205.CrossRefPubMedGoogle Scholar
  95. [95]
    Ziegler, C.J., Sandman, K.E., Liang, C.H., Lippard, S.J. 1999. Toxicity of platinum(II) amino acid (N,O) complexes parallels their binding to DNA as measured in a new solid phase assay involving a fluorescent HMG1 protein construct readout. J Biol Inorg Chem 4, 402–411.CrossRefPubMedGoogle Scholar
  96. [96]
    Zimmermann, T., Burda, J.V. 2009. Charge-scaled cavities in polarizable continuum model: Determination of acid dissociation constants for platinum-amino acid complexes. J Chem Phys 131, 135101.CrossRefPubMedGoogle Scholar
  97. [97]
    Zimmermann, T., Burda, J.V. 2010. Theoretical study of reaction of cisplatin with cysteine and methionine at constant pH Dalton Transact. In print.Google Scholar
  98. [98]
    Zimmermann, T., Chval, Z., Burda, J.V. 2009. Cisplatin interaction with cysteine and methionine in aqueous solution: Computational DFT/PCM study. J Phys Chem B 113, 3139–3150.CrossRefPubMedGoogle Scholar
  99. [99]
    Zimmermann, T., Zeizinger. M., Burda. J.V. 2005. Cisplatin interaction with cysteine and methionine; theoretical DFT study. J Inorg Biochem 99, 2184–2196.CrossRefPubMedGoogle Scholar

Copyright information

© International Association of Scientists in the Interdisciplinary Areas and Springer Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of Chemical Physics and Optics, Faculty of Mathematics and PhysicsCharles UniversityPrague 2Czech Republic

Personalised recommendations