Computer-aided analysis of structural properties and epitopes of Iranian HPV-16 E7 oncoprotein

  • Fatemeh Moosavi
  • Hassan Mohabatkar
  • Sasan Mohsenzadeh
Article
  • 87 Downloads

Abstract

Infection by human papillomavirus type 16 (HPV-16) is the cause of 50% or more of cervical cancers in women. The E7 oncoprotein of HPV-16 has long been known as a potent immortalizing and transforming agent. We used different servers like PseAAC, MHC_binding, MHC_II_binding and Expasy for the present computational prediction. The results for T cell epitopes showed that B1501, A0203, A0201, A0202, A6801 and DRB0405 alleles had lower IC50 than other alleles. We also predicted several peptides with the best binding affinities for alleles of the most frequent MHC class I and II alleles of the various ethnic groups living in the different region of Iran. Two peptides (26–35) and (44–52) were predicted as B-cell epitopes. According to this analysis 1 N-glycosylation site, 2 PKC sites, 4 CK2 sites and 3 disulfide sites were predicted. Our computational study predicted that B cell epitope 1 was Casein kinase II phosphorylated (site No. 31) and glycosylated (site No. 29). Putative MHC-I epitopes 3 and 5 and MHC-II epitopes 19, 21 and 26 were predicted to be casein kinase II phosphorylated. MHC-II epitopes 19 and 21 was predicted to be glycosylated. T cell epitopes 1, 13, 16 and 24 were demonstrated to be kinase C phosphorylated. The result of this analysis for Iranian HPV-16 E7 also indicated that 21.43%, 18.37% and 60.20% of the protein were in the α-helix, extended strand and random coil respectively.

Key words

HPV16 E7 epitope posttranslation modification bioinformatics computational analysis structure prediction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Amirzargar, A., Mytilineos, J., Farjadian, S., Doroudchi, M., Scherer, S., Opelz, G., Ghaderi, A. 2001. Human leukocyte antigen class II allele frequencies and haplotype association in Iranian normal population. Hum Immunol 62, 1234–1238.CrossRefPubMedGoogle Scholar
  2. [2]
    Bairoch, A., Bucher, P., Hofmann, K. 1997. The PROSITE database, its status in 2002. Nuc Aci Res 25, 217–221.CrossRefGoogle Scholar
  3. [3]
    Bause, E. 1983. Structural requirements of Nglycosylation of proteins. Studies with proline peptides as conformational probes. Biochem J 209, 331–336.PubMedGoogle Scholar
  4. [4]
    Botarelli, P., Houlden, B.A., Haigwood, N.L., Servis, C., Montagna, D., Abrignani, S. 1991. N-glycosylation of HIV-gp120 may constrain recognition by T lymphocytes. J Immunol 147, 3128–3132.PubMedGoogle Scholar
  5. [5]
    Boyer, S.N., Wazer, D.E., Band, V. 1996. E7 protein of human papilloma virus-16 induces degradation of retinoblastoma protein through the ubiquitinproteasome pathway. Cancer Res 56, 4620–4624.PubMedGoogle Scholar
  6. [6]
    Brinkman, J.A., Caffrey, A.S., Muderspach, L.I., Roman, L.D., Kast, W.M. 2005. The impact of anti HPV vaccination on cervical cancer incidence and HPV induced cervical lesions: consequences for clinical management. Eur J Gynaecol Oncol 26, 42.Google Scholar
  7. [7]
    Bui, H.H., Sidney, J., Peters, B., Sathiamurthy, M., Sinichi, A., Purton, K.A., Mothé, B.R., Chisari, F.V., Watkins, D.I., Sette, A. 2005. Automated generation and evaluation of specific MHC binding predictive tools: ARB matrix applications. Immunogenetics 57, 304–314.CrossRefPubMedGoogle Scholar
  8. [8]
    Chesters, P.M., Vousden, K.H., Edmonds, C., Mc-Cance, D.J. 1990. Analysis of human papillomavirus type 16 open reading frame E7 immortalizing function in rat embryo fibroblast cells. J Gen Virol 71, 449–453.CrossRefPubMedGoogle Scholar
  9. [9]
    De Groot, A.S., Bosma, A., Chinai, N., Frost, J., Jesdale, B.M., Gonzalez, M.A., Martin, W, Saint, A. 2001. From genome to vaccine: in silico predictions, ex vivo verification. Vaccine 19, 4385–4395.CrossRefPubMedGoogle Scholar
  10. [10]
    Denis, F., Archambault, D. 2001. Molecular cloning and characterization of beluga whale (Delphinapterus leucas) interleukin-1beta and tumor necrosis factoralpha. Can J Vet Res 65, 233–240.PubMedGoogle Scholar
  11. [11]
    Edmonds, C., Vousden, K.H. 1989. A point mutational analysis of human papillomavirus type 16 E7 protein. J Virol 63, 2650–2656.PubMedGoogle Scholar
  12. [12]
    Emini, E.A., Hughes, J.V., Perlow, D.S., Boger, J. 1985. Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide. J Virol 55, 836–839.PubMedGoogle Scholar
  13. [13]
    Farjadian, S., Ghaderi, A. 2007. HLA class II similarities in Iranian Kurds and Azeris. Int J Immunogenet 34, 457–463.CrossRefPubMedGoogle Scholar
  14. [14]
    Ferre, F., Clote, P. 2005. DiANNA a web server for disulfide connectivity prediction. Nucleic Acids Res 33, 230–232.CrossRefGoogle Scholar
  15. [15]
    Gao, X., Nelson, G.W., Karacki, P., Martin, M.P., Phair, J., Kaslow, R., Goedert, J.J., Buchbinder, S., Hoots K., Vlahov, D., O’Brien, S.J., Carrington, M. 2001. Effect of a single amino acid change in MHC class I molecules on the rate of progression to AIDS. N Engl J Med 344, 1668–1675.CrossRefPubMedGoogle Scholar
  16. [16]
    Garnier, J., Gibrat, J.F., Robson, B. 1996. GOR secondary structure prediction method version IV. Methods Enzymol 266, 540–553.CrossRefPubMedGoogle Scholar
  17. [17]
    Hashida, T., Yasumoto, S. 1990. Casein kinase II activities related to hyperphosphorylation of human papillomavirus type 16-E7 oncoprotein in epidermal keratinocytes. Biochem Biophys Res Commun 172, 958–964.CrossRefPubMedGoogle Scholar
  18. [18]
    Hubbard, S.C., Ivatt, R.J. 1981. Synthesis and processing of asparagine-linked oligosaccharides. Annu Rev Biochem 50, 555–583.CrossRefPubMedGoogle Scholar
  19. [19]
    Hubbert, N.L., Sedman, S.A., Schiller, J.T. 1992. Human papillomavirus type 16 E6 increases the degradation rate of p53 in human keratinocytes. J Virol 66, 6237–6241.PubMedGoogle Scholar
  20. [20]
    Janin, J., Wodak, S. 1978. Conformation of amino acid side chains in proteins. J Mol Biol 125, 357–386.CrossRefPubMedGoogle Scholar
  21. [21]
    Jochmus-Kudielka, I., Schneider, A., Braun, R., Kimmig, R., Koldovsky, U., Schneweis, K.E., Seedorf, K., Gissmann, L. 1989. Antibodies against the human papillomavirus type 16 early proteins in human sera: correlation of anti-E7 reactivity with cervical cancer. J Natl Cancer Inst 81, 1698–1703.CrossRefPubMedGoogle Scholar
  22. [22]
    Kanjanavirojkul, N., Pairojkul, C., Yuenyao, P., Patarapadungkit, N. 2006. Risk factors and histological outcome of abnormal cervix with human papilloma infection in northeastern Thai-women. Asian Pac J Cancer Prev 7, 567–570.PubMedGoogle Scholar
  23. [23]
    Karplus, P.A., Schulz, G.E. 1985. Prediction of chain flexibility in proteins: A tool for the selection of peptide antigens. Naturwissenschaften 72, 212–213.CrossRefGoogle Scholar
  24. [24]
    Katzenellenbogen, R.A., Vliet-Gregg, P., Xu, M., Galloway, D.A. 2009. NFX1-123 Increases hTERT expression and telomerase activity posttranscriptionally in human papillomavirus type 16 E6 keratinocytes. J Virol 83, 6446–6456.CrossRefPubMedGoogle Scholar
  25. [25]
    Khazaei, H.A., Aghamohammadi, A., Rezaei, N., Nikbin, B., Khosravi, M.A., MiriMoghaddam, I. 2004. Major histocompatibility complex class I and II antigens frequencies in Baloch ethnic group living in the southeast region of Iran. Transplant Proc 36, 1302–1304.CrossRefPubMedGoogle Scholar
  26. [26]
    Kolaskar, A.S., Tongaonkar, P.C. 1990. A semiempirical method for prediction of antigenic determinants on protein antigens. FEBS Lett 276, 172–174.CrossRefPubMedGoogle Scholar
  27. [27]
    Li, M., Beard, P., Estes, P.A., Lyon, M.K., Garcea, R.L. 1998. Intercapsomeric disulfide bonds in papillomavirus assembly and disassembly. J Virol 72, 2160–2167.PubMedGoogle Scholar
  28. [28]
    Liang, Y.J., Chang, H.S., Wang, C.Y., Yu, W.C. 2008. DYRK1A stabilizes HPV16E7 oncoprotein through phosphorylation of the threonine 5 and threonine 7 residues. Int J Biochem Cell Biol 40, 2431–2441.CrossRefPubMedGoogle Scholar
  29. [29]
    Munger, K., Werness, B.A., Dyson, N., Phelps, W.C., Harlow, E., Howley, P.M. 1989. Complex formation of human papillomavirus E7 proteins with the retinoblastoma tumor suppressor gene product. EMBO J 8, 4099–4105.PubMedGoogle Scholar
  30. [30]
    Munoz, N., Bosch, F.X., de Sanjosé, S., Herrero, R., Castellsagué, X., Shah, K.V., Snijders, P.J., Meijer, C.J. 2003. Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med 348, 518–527.CrossRefPubMedGoogle Scholar
  31. [31]
    Ohlschlager, P., Pes, M., Osen, W., Düst, M., Schneider, A., Gissmann, L., Kaufmann, A.M. 2006. An improved rearranged Human Papillomavirus Type 16 E7 DNA vaccine candidate (HPV-16 E7SH) induces an E7 wildtype-specific T cell response. Vaccine 24, 2880–2893.CrossRefPubMedGoogle Scholar
  32. [32]
    Otvos, L.J., Cappelletto, B., Varga, I., Wade, J.D., Xiang, Z.Q., Kaiser, K., Stephens, L.J., Ertl, H.C. 1996. The effects of post-translational side-chain modifications on the stimulatory activity, serum stability and conformation of synthetic peptides carrying T helper cell epitopes. Biochim Biophys Acta 1313, 11–19.CrossRefPubMedGoogle Scholar
  33. [33]
    Parker, J.M., Guo, D., Hodges, R.S. 1986. New hydrophilicity scale derived from high-performance liquid chromatography peptide retention data: correlation of predicted surface residues with antigenicity and X-ray-derived accessible sites. Biochemistry 25, 5425–5432.CrossRefPubMedGoogle Scholar
  34. [34]
    Pellequer, J.L., Westhof, E., van Regenmortel, M.H. 1993. Correlation between the location of antigenic sites and the prediction of turns in proteins. Immunol Lett 36, 83–99.CrossRefPubMedGoogle Scholar
  35. [35]
    Ponnuswamy, P.K., Prabhakaran, M., Manavalan, P. 1980. Hydrophobic packing and spatial arrangement of amino acid residues in globular proteins. Biochim Biophys Acta 623, 301–316.PubMedGoogle Scholar
  36. [36]
    Ragin, C.C., Modugno, F., Gollin, S.M. 2007. The epidemiology and risk factors of head and neck cancer: A focus on human papillomavirus. J Dent Res 86, 104–114.CrossRefPubMedGoogle Scholar
  37. [37]
    Rawls, J.A., Pusztai, R., Green, M. 1990. Chemical synthesis of human papillomavirus type 16 E7 oncoprotein: autonomous protein domains for induction of cellular DNA synthesis and for transactivation. J Virol 64, 6121–6129.PubMedGoogle Scholar
  38. [38]
    Sang, B.C., Barbosa, M.S. 1992. Single amino acid substitutions in “low-risk” human papillomavirus (HPV) type 6 E7 protein enhance features characteristic of the “high-risk” HPV E7 oncoproteins. Proc Natl Acad Sci USA 89, 8063–8067.CrossRefPubMedGoogle Scholar
  39. [39]
    Sapp, M., Volpers, C., Müler, M., Streeck, R.E. 1995. Organization of the major and minor capsid proteins in human papillomavirus type 33 virus-like particles. J Gen Virol 76, 2407–2412.CrossRefPubMedGoogle Scholar
  40. [40]
    Schlosser, G., Mezo, G., Kiss, R., Vass, E., Majer, Z., Feijlbrief, M., Perczel, A., Bosze, S., Welling-Wester, S., Hudecz, F. 2003. Synthesis, solution structure analysis and antibody binding of cyclic epitope peptides from glycoprotein D of Herpes simplex virus type I. Biophys Chem 106, 155–171.CrossRefPubMedGoogle Scholar
  41. [41]
    Shen, H.B., Chou, K.C. 2008. PseAAC: A flexible web server for generating various kinds of protein pseudo amino acid composition. Anal Biochem 373, 386–388.CrossRefPubMedGoogle Scholar
  42. [42]
    Tugizov, S., Berline, J., Herrera, R., Penaranda, M.E., Nakagawa, M., Palefsky, J. 2005. Inhibition of human papillomavirus type 16 E7 phosphorylation by the S100 MRP-8/14 protein complex. J Virol 79, 1099–1112.CrossRefPubMedGoogle Scholar
  43. [43]
    Vullo, A., Frasconi, P. 2004. Disulfide connectivity prediction using recursive neural networks and evolutionary information. Bioinformatics 20, 653–660.CrossRefPubMedGoogle Scholar
  44. [44]
    Yan, Q. 2008. Bioinformatics databases and tools in virology research. In Silico Biology 8, 71–85.PubMedGoogle Scholar
  45. [45]
    Yu, K., Petrovsky, N., Schonbach, C., Koh, J.Y. Brusic, V. 2002. Methods for prediction of peptide binding to MHC molecules: Acomparative study. Mol Med 8, 137–148.PubMedGoogle Scholar

Copyright information

© International Association of Scientists in the Interdisciplinary Areas and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Fatemeh Moosavi
    • 1
  • Hassan Mohabatkar
    • 1
  • Sasan Mohsenzadeh
    • 1
  1. 1.Department of Biology, College of SciencesShiraz UniversityShirazIran

Personalised recommendations