Codon populations in single-stranded whole human genome DNA Are fractal and fine-tuned by the Golden Ratio 1.618

Article

Abstract

This new bioinformatics research bridges Genomics and Mathematics. We propose a universal “Fractal Genome Code Law”: The frequency of each of the 64 codons across the entire human genome is controlled by the codon’s position in the Universal Genetic Code table. We analyze the frequency of distribution of the 64 codons (codon usage) within single-stranded DNA sequences. Concatenating 24 Human chromosomes, we show that the entire human genome employs the well known universal genetic code table as a macro structural model. The position of each codon within this table precisely dictates its population. So the Universal Genetic Code Table not only maps codons to amino acids, but serves as a global checksum matrix. Frequencies of the 64 codons in the whole human genome scale are a self-similar fractal expansion of the universal genetic code. The original genetic code kernel governs not only the micro scale but the macro scale as well. Particularly, the 6 folding steps of codon populations modeled by the binary divisions of the “Dragon fractal paper folding curve” show evidence of 2 attractors. The numerical relationship between the attractors is derived from the Golden Ratio. We demonstrate that:
  1. (i)

    The whole Human Genome Structure uses the Universal Genetic Code Table as a tuning model. It predetermines global codons proportions and populations. The Universal Genetic Code Table governs both micro and macro behavior of the genome.

     
  2. (ii)

    We extend the Chargaff’s second rule from the domain of single TCAG nucleotides to the larger domain of codon triplets.

     
  3. (iii)

    Codon frequencies in the human genome are clustered around 2 fractal-like attractors, strongly linked to the golden ratio 1.618.

     

Key words

interdisciplinary bioinformatics mathematics human genome decoding Universal Genetic Code Chargaff’s rules noncoding DNA symmetry chaos theory fractals golden ratio checksum cellular automata DNA strands atomic weights balance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Affleck, I. 2010. Solid-state physics: Golden ratio seen in a magnet. Nature 464, 362–363.CrossRefPubMedGoogle Scholar
  2. [2]
    Albrecht-Buehler, G. 2006. Asymptotically increasing compliance of genomes with Chargaff’s second parity rules through inversions and inverted transpositions. Proc Natl Acad Sci USA 103, 17828–17833.CrossRefPubMedGoogle Scholar
  3. [3]
    Baltimore, D. 2001. Our genome unveiled. Nature 409, 814–816.CrossRefPubMedGoogle Scholar
  4. [4]
    Calleman, C.J. 2009. The Purposeful Universe. Bear § Co, Rochester USA, 153.Google Scholar
  5. [5]
    Coldea, R., Tennant, D.A., Wheeler, E.M., Wawrzynska, E., Prabhakaran, D., Tlling, M., Habicht, K., Smeibidl, P., Kiefer, K. 2010. Quantum criticality in an ising chain: Experimental evidence for emergent E8 symmetry. Science 327, 177–180.CrossRefPubMedGoogle Scholar
  6. [7]
    Fedoroff, N.V. 1984. Transposable genetic elements in maize. Scientific American 250, 84–98.CrossRefGoogle Scholar
  7. [8]
    Gardner, M. 1967. Mathematical Games. Scientific American 216, 124–125, 118–120, and 217, 115.Google Scholar
  8. [9]
    Lander, E. 2009. Science 326, cover page (Eric Lander (Science Adviser to the President and Director of Broad Institute) et al. delivered the message on Science Magazine cover (Oct. 9, 2009) to the effect: 〈〈Mr. President; The Genome is Fractal!〉〉).Google Scholar
  9. [10]
    Liebermann-Aiden, E., Van Berkum, N.L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B.R., Sabo, P.J., Dorschner, M.O., Sandstrom, R, Bernstein, B., Bender, M.A., Groudine, M., Gnirke, A., Stamatoyannopoulos, J., Mirny, L.A., Lander, E.S., Dekker, J. 2009. Comprehensive mapping of long-range interactions reveals folding principles of the human genome Export. Science 326, 289–293.CrossRefGoogle Scholar
  10. [11]
    Mandelbrot, B.B. 1983. The Fractal Geometry of Nature. Freeman, New York.Google Scholar
  11. [12]
    Montagnier, L., Aïsssa, J., Lavallée, C., Mbamy, M., Varon, J., Chenal, H. 2009. Electromagnetic detection of HIV DNA in the blood of AIDS patients treated by antiretroviral therapy. Interdisciplinary Sci Comput Life Sci 1, 245–253.CrossRefGoogle Scholar
  12. [13]
    Pellionisz, A. 2008. The principle of recursive genome function. The Cerebellum Springer 7, 348–359.CrossRefGoogle Scholar
  13. [14]
    Peng, C.K., Buldyrev, S.V., Goldberger, A.L., Havlin, S., Sclortino, F., Simons, M., Stanley, H.E. 1992. Long-range correlations in nucleotide sequences, Nature 356, 168–170.CrossRefPubMedGoogle Scholar
  14. [15]
    Perez, J.C. 1990. Integers neural network systems (INNS) using resonance properties of a Fibonacci’s chaotic golden neuron. Neural Networks 1, 859–865.Google Scholar
  15. [16]
    Perez, J.C. 1991. Chaos, DNA, and Neuro-computers: A golden link: The hidden language of genes, global language and order in the human genome. Speculations in Science and Technology 14, 336–346.Google Scholar
  16. [17]
    Perez, J.C. 1994. Method for the functional optimization of high temperature superconductors by controlling the morphological proportions of their thin layers. (PCT/FR93/00782). International Européen PCT (Patent Cooperation Treaty) number WO94/03932.Google Scholar
  17. [18]
    Perez, J.C. 1997. L’ADN décrypté (〈〈DNA Deciphered〉〉), Resurgence, Liège Belgium.Google Scholar
  18. [19]
    Perez, J.C. 2009. Codex Biogenesis. Resurgence, Liège Belgium.Google Scholar
  19. [20]
    Rudner, R., Karkas, J.D., Chargaff, E. 1968. Separation of B. subtilis DNA into complementary strands. III. Direct Analysis. Proc Natl Acad Sci USA 60, 931–922.Google Scholar
  20. [21]
    Yamagishi, M.E.B., Shimabukuro, A.I. 2008. Nucleotides frequencies in human genome and Fibonacci numbers. Bulletin of Mathematical Biology 70, 643–653.CrossRefPubMedGoogle Scholar

Copyright information

© International Association of Scientists in the Interdisciplinary Areas and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Individual researcherMartignasFrance

Personalised recommendations