New exact approaches to row layout problems

  • Anja FischerEmail author
  • Frank Fischer
  • Philipp Hungerländer
Full Length Paper


Given a set of departments, a number of rows and pairwise connectivities between these departments, the multi-row facility layout problem (MRFLP) looks for a non-overlapping arrangement of these departments in the rows such that the weighted sum of the center-to-center distances is minimized. As even small instances of the MRFLP are rather challenging, several special cases have been considered in the literature. In this paper we present new mixed-integer linear programming formulations for the (space-free) multi-row facility layout problem with given assignment of the departments to the rows that combine distance and betweenness variables. Using these formulations instances with up to 25 departments can be solved to optimality (within at most 6 h) for the first time. Furthermore, we are able to reduce the running times for instances with up to 23 departments significantly in comparison to the literature. Later on we use these formulations in an enumeration scheme for solving the (space-free) multi-row facility layout problem. In particular, we test all possible row assignments, where some assignments are excluded due to our new combinatorial investigations. For the first time this approach enables us to solve instances with two rows with up to 16 departments, with three rows with up to 15 departments and with four and five rows with up to 13 departments exactly in reasonable time.


Double-row layout problem Facility layout Integer programming Exact solution methods 

Mathematics Subject Classification

90C10 90C57 90C27 



This work was supported by the Simulation Science Center Clausthal–Göttingen. We thank two anonymous referees for their valuable comments that helped to improve the paper. Furthermore we thank A. Amaral for sending us several DRFLP instances.


  1. 1.
    Ahmadi, A., Pishvaee, M.S., Jokar, M.R.A.: A survey on multi-floor facility layout problems. Comput. Ind. Eng. 107, 158–170 (2017). Google Scholar
  2. 2.
    Ahonen, H., de Alvarenga, A.G., Amaral, A.R.S.: Simulated annealing and tabu search approaches for the corridor allocation problem. Eur. J. Oper. Res. 232(1), 221–233 (2014)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Amaral, A.R.: A mixed-integer programming formulation for the double row layout of machines in manufacturing systems. Int. J. Prod. Res. 57(1), 34–47 (2019). Google Scholar
  4. 4.
    Amaral, A.R.S.: On the exact solution of a facility layout problem. Eur. J. Oper. Res. 173(2), 508–518 (2006)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Amaral, A.R.S.: An exact approach to the one-dimensional facility layout problem. Oper. Res. 56(4), 1026–1033 (2008). MathSciNetzbMATHGoogle Scholar
  6. 6.
    Amaral, A.R.S.: A mixed 0–1 linear programming formulation for the exact solution of the minimum linear arrangement problem. Optim. Lett. 3(4), 513–520 (2009)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Amaral, A.R.S.: A new lower bound for the single row facility layout problem. Discrete Appl. Math. 157(1), 183–190 (2009)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Amaral, A.R.S.: On duplex arrangement of vertices. Technical report, Departamento de Informática, Universidade Federal do Espírito Santo (UFES), Brazil (2011)Google Scholar
  9. 9.
    Amaral, A.R.S.: The corridor allocation problem. Comput. Oper. Res. 39(12), 3325–3330 (2012)zbMATHGoogle Scholar
  10. 10.
    Amaral, A.R.S.: Optimal solutions for the double row layout problem. Optim. Lett. 7(2), 407–413 (2013)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Amaral, A.R.S.: A parallel ordering problem in facilities layout. Comput. Oper. Res. 40(12), 2930–2939 (2013)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Amaral, A.R.S., Letchford, A.N.: A polyhedral approach to the single row facility layout problem. Math. Program. 141(1–2), 453–477 (2013)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Anjos, M.F., Fischer, A., Hungerländer, P.: Improved exact approaches for row layout problems with departments of equal length. Eur. J. Oper. Res. 270(2), 514–529 (2018). MathSciNetzbMATHGoogle Scholar
  14. 14.
    Anjos, M.F., Kennings, A., Vannelli, A.: A semidefinite optimization approach for the single-row layout problem with unequal dimensions. Discrete Optim. 2(2), 113–122 (2005)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Anjos, M.F., Liers, F.: Global approaches for facility layout and VLSI floorplanning. In: Anjos, M.F., Lasserre, J.B. (eds.) Handbook on Semidefinite, Conic and Polynomial Optimization, International Series in Operations Research & Management Science, vol. 166, pp. 849–877. Springer, New York (2012)zbMATHGoogle Scholar
  16. 16.
    Anjos, M.F., Vannelli, A.: Computing globally optimal solutions for single-row layout problems using semidefinite programming and cutting planes. INFORMS J. Comput. 20(4), 611–617 (2008)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Anjos, M.F., Vieira, M.V.: Mathematical optimization approaches for facility layout problems: the state-of-the-art and future research directions. Eur. J. Oper. Res. 261(1), 1–16 (2017). MathSciNetzbMATHGoogle Scholar
  18. 18.
    Anjos, M.F., Yen, G.: Provably near-optimal solutions for very large single-row facility layout problems. Optim. Methods Softw. 24(4), 805–817 (2009)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Azevedo, M.M., Crispim, J.A., de Sousa, J.P.: A dynamic multi-objective approach for the reconfigurable multi-facility layout problem. J. Manuf. Syst. 42, 140–152 (2017). Google Scholar
  20. 20.
    Bracht, U., Dahlbeck, M., Fischer, A., Krüger, T.: Combining simulation and optimization for extended double row facility layout problems in factory planning. In: Baum, M., Brenner, G., Grabowski, J., Hanschke, T., Hartmann, S., Schöbel, A. (eds.) Simulation Science, pp. 39–59. Springer International Publishing, Cham (2018)zbMATHGoogle Scholar
  21. 21.
    Brusco, M., Stahl, S.: Using quadratic assignment methods to generate initial permutations for least-squares unidimensional scaling of symmetric proximity matrices. J. Classif. 17(2), 197–223 (2000)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Caprara, A., Oswald, M., Reinelt, G., Schwarz, R., Traversi, E.: Optimal linear arrangements using betweenness variables. Math. Program. Comput. 3(3), 261–280 (2011). MathSciNetzbMATHGoogle Scholar
  23. 23.
    Castillo, I., Peters, B.A.: Integrating design and production planning considerations in multi-bay manufacturing facility layout. Eur. J. Oper. Res. 157(3), 671–687 (2004)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Chung, J., Suh, Y.: Analysis on the pier-type material flow pattern for facility layout applications. J. Appl. Sci. 14(3), 237–244 (2014)Google Scholar
  25. 25.
    Chung, J., Tanchoco, J.: The double row layout problem. Int. J. Prod. Res. 48(3), 709–727 (2010)zbMATHGoogle Scholar
  26. 26.
    Datta, D., Amaral, A.R.S., Figueira, J.R.: Single row facility layout problem using a permutation-based genetic algorithm. Eur. J. Oper. Res. 213(2), 388–394 (2011)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Ficko, M., Brezocnik, M., Balic, J.: Designing the layout of single- and multiple-rows flexible manufacturing system by genetic algorithms. J. Mater. Process. Technol. 157–158, 150–158 (2004)Google Scholar
  28. 28.
    Fischer, A., Fischer, F., Hungerländer, P.: A new exact approach to the space-free double row layout problem. In: Doerner, K.F., Ljubic, I., Pflug, G., Tragler, G. (eds.) Operations Research Proceedings 2015, Selected Papers of the International Conference of the German, Austrian and Swiss Operations Research Societies (GOR, ÖGOR, SVOR/ASRO), University of Vienna, Austria, September 1–4, 2015, Operations Research Proceedings, pp. 125–130. Springer (2015).
  29. 29.
    Fischer, A., Fischer, F., Hungerländer, P.: Program code to new exact approaches to row layout problems (2019). Google Scholar
  30. 30.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)zbMATHGoogle Scholar
  31. 31.
    Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified NP-complete graph problems. Theor. Comput. Sci. 1(3), 237–267 (1976)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Geoffrion, A., Graves, G.: Scheduling parallel production lines with changeover costs: practical applications of a quadratic assignment/LP approach. Oper. Res. 24, 595–610 (1976)zbMATHGoogle Scholar
  33. 33.
    Grötschel, M., Jünger, M., Reinelt, G.: A cutting plane algorithm for the linear ordering problem. Oper. Res. 32(6), 1195–1220 (1984)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Grötschel, M., Jünger, M., Reinelt, G.: Facets of the linear ordering polytope. Math. Program. 33, 43–60 (1985)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Guan, J., Lin, G.: Hybridizing variable neighborhood search with ant colony optimization for solving the single row facility layout problem. Eur. J. Oper. Res. 248(3), 899–909 (2016). MathSciNetzbMATHGoogle Scholar
  36. 36.
    Hassan, M.M.D.: Machine layout problem in modern manufacturing facilities. Int. J. Prod. Res. 32(11), 2559–2584 (1994)zbMATHGoogle Scholar
  37. 37.
    Heragu, S.S., Kusiak, A.: Machine layout problem in flexible manufacturing systems. Oper. Res. 36(2), 258–268 (1988)Google Scholar
  38. 38.
    Heragu, S.S., Kusiak, A.: Efficient models for the facility layout problem. Eur. J. Oper. Res. 53(1), 1–13 (1991)zbMATHGoogle Scholar
  39. 39.
    Hosseini-Nasab, H., Fereidouni, S., Fatemi Ghomi, S.M.T., Fakhrzad, M.B.: Classification of facility layout problems: a review study. Int. J. Adv. Manuf. Technol. 94(1), 957–977 (2018). Google Scholar
  40. 40.
    Hungerländer, P.: A semidefinite optimization approach to the parallel row ordering problem. Technical report, Alpen-Adria Universität Klagenfurt, Mathematics, Optimization Group, TR-ARUK-M-O-14-05 (2014)Google Scholar
  41. 41.
    Hungerländer, P.: Single-row equidistant facility layout as a special case of single-row facility layout. Int. J. Prod. Res. 52(5), 1257–1268 (2014)Google Scholar
  42. 42.
    Hungerländer, P., Anjos, M.F.: A semidefinite optimization approach to space-free multi-row facility layout. Cahiers du GERAD G-2012-03, GERAD, Montreal, QC, Canada (2012)Google Scholar
  43. 43.
    Hungerländer, P., Anjos, M.F.: A semidefinite optimization-based approach for global optimization of multi-row facility layout. Eur. J. Oper. Res. 245(1), 46–61 (2015). MathSciNetzbMATHGoogle Scholar
  44. 44.
    Hungerländer, P., Rendl, F.: A computational study and survey of methods for the single-row facility layout problem. Comput. Optim. Appl. 55(1), 1–20 (2013)MathSciNetzbMATHGoogle Scholar
  45. 45.
    Hungerländer, P., Rendl, F.: Semidefinite relaxations of ordering problems. Math. Program. 140(1), 77–97 (2013)MathSciNetzbMATHGoogle Scholar
  46. 46.
    IBM ILOG CPLEX V12.8 User’s Manual for CPLEX (2018)Google Scholar
  47. 47.
    Keller, B.: Construction heuristics for the single row layout problem with machine-spanning clearances. INFOR 57, 1–24 (2017). Google Scholar
  48. 48.
    Keller, B., Buscher, U.: Single row layout models. Eur. J. Oper. Res. 245(3), 629–644 (2015)MathSciNetzbMATHGoogle Scholar
  49. 49.
    Kothari, R., Ghosh, D.: Population heuristics for the corridor allocation problem. Technical report, working paper, Indian Institute of Management Ahmedabad (2012)Google Scholar
  50. 50.
    Kothari, R., Ghosh, D.: The single row facility layout problem: state of the art. OPSEARCH 49(4), 442–462 (2012). MathSciNetzbMATHGoogle Scholar
  51. 51.
    Kothari, R., Ghosh, D.: Insertion based Lin–Kernighan heuristic for single row facility layout. Comput. Oper. Res. 40(1), 129–136 (2013)MathSciNetzbMATHGoogle Scholar
  52. 52.
    Kothari, R., Ghosh, D.: Tabu search for the single row facility layout problem using exhaustive 2-opt and insertion neighborhoods. Eur. J. Oper. Res. 224(1), 93–100 (2013)MathSciNetzbMATHGoogle Scholar
  53. 53.
    Kothari, R., Ghosh, D.: An efficient genetic algorithm for single row facility layout. Optim. Lett. 8(2), 679–690 (2014)MathSciNetzbMATHGoogle Scholar
  54. 54.
    Kothari, R., Ghosh, D.: A scatter search algorithm for the single row facility layout problem. J. Heuristics 20(2), 125–142 (2014)Google Scholar
  55. 55.
    Laporte, G., Mercure, H.: Balancing hydraulic turbine runners: a quadratic assignment problem. Eur. J. Oper. Res. 35(3), 378–381 (1988)Google Scholar
  56. 56.
    Loiola, E.M., de Abreu, N.M.M., Boaventura-Netto, P.O., Hahn, P., Querido, T.: A survey for the quadratic assignment problem. Eur. J. Oper. Res. 176(2), 657–690 (2007)MathSciNetzbMATHGoogle Scholar
  57. 57.
    Love, R., Wong, J.: On solving a one-dimensional space allocation problem with integer programming. INFOR 14(2), 139–143 (1976). zbMATHGoogle Scholar
  58. 58.
    Maadi, M., Javidnia, M., Jamshidi, R.: Two strategies based on meta-heuristic algorithms for parallel row ordering problem (PROP). Iran. J. Manag. Stud. 10(2), 467–498 (2017). Google Scholar
  59. 59.
    Meller, R.D.: The multi-bay manufacturing facility layout problem. Int. J. Prod. Res. 35(5), 1229–1237 (1997)zbMATHGoogle Scholar
  60. 60.
    Murray, C.C., Smith, A.E., Zhang, Z.: An efficient local search heuristic for the double row layout problem with asymmetric material flow. Int. J. Prod. Res. 51(20), 6129–6139 (2013)Google Scholar
  61. 61.
    Ozcelik, F.: A hybrid genetic algorithm for the single row layout problem. Int. J. Prod. Res. 50(20), 5872–5886 (2012). Google Scholar
  62. 62.
    Palubeckis, G.: A branch-and-bound algorithm for the single-row equidistant facility layout problem. OR Spectr. 34(1), 1–21 (2012). MathSciNetzbMATHGoogle Scholar
  63. 63.
    Palubeckis, G.: Fast local search for single row facility layout. Eur. J. Oper. Res. 246(3), 800–814 (2015). MathSciNetzbMATHGoogle Scholar
  64. 64.
    Palubeckis, G.: Single row facility layout using multi-start simulated annealing. Comput. Ind. Eng. 103, 1–16 (2017). Google Scholar
  65. 65.
    Samarghandi, H., Eshghi, K.: An efficient tabu algorithm for the single row facility layout problem. Eur. J. Oper. Res. 205(1), 98–105 (2010)MathSciNetzbMATHGoogle Scholar
  66. 66.
    Sanjeevi, S., Kianfar, K.: A polyhedral study of triplet formulation for single row facility layout problem. Discrete Appl. Math. 158, 1861–1867 (2010)MathSciNetzbMATHGoogle Scholar
  67. 67.
    Sarker, B., Wilhelm, W., Hogg, G.: One-dimensional machine location problems in a multi-product flowline with equidistant locations. Eur. J. Oper. Res. 105(3), 401–426 (1998)zbMATHGoogle Scholar
  68. 68.
    Secchin, L.D., Amaral, A.R.S.: Disposição de facilidades em fila dupla via programação inteira mista. In: XLVI SBPO - Simpósio Brasileiro de Pesquisa Operacional, pp. 2327–2334 (2014).
  69. 69.
    Secchin, L.D., Amaral, A.R.S.: An improved mixed-integer programming model for the double row layout of facilities. Optim. Lett. 13(1), 193–199 (2019). MathSciNetzbMATHGoogle Scholar
  70. 70.
    Smith, A.E., Murray, C.C., Zuo, X.: An extended double row layout problem. In: Proceedings of the 12th International Material Handling Research Colloquium, pp. 554–569 (2012)Google Scholar
  71. 71.
    Tang, L., Zuo, X., Wang, C., Zhao, X.: A moea/d based approach for solving robust double row layout problem. In: 2015 IEEE Congress on Evolutionary Computation (CEC), pp. 1966–1973 (2015).
  72. 72.
    Tucker, A.W.: On directed graphs and integer programs. Technical report, IBM Mathematical Research Project (1960)Google Scholar
  73. 73.
    Wang, S., Zuo, X., Liu, X., Zhao, X., Li, J.: Solving dynamic double row layout problem via combining simulated annealing and mathematical programming. Appl. Soft Comput. 37, 303–310 (2015). Google Scholar
  74. 74.
    Wess, B., Zeitlhofer, T.: On the phase coupling problem between data memory layout generation and address pointer assignment. In: Schepers, H. (ed.) Software and Compilers for Embedded Systems, Lecture Notes in Computer Science, vol. 3199, pp. 152–166. Springer, Berlin Heidelberg (2004)Google Scholar
  75. 75.
    Younger, D.H.: Minimum feedback arc sets for a directed graph. IEEE Trans. Circuit Theory 10(2), 238–245 (1963)Google Scholar
  76. 76.
    Zhang, Z., Murray, C.C.: A corrected formulation for the double row layout problem. Int. J. Prod. Res. 50(15), 4220–4223 (2012)Google Scholar
  77. 77.
    Zuo, X., Murray, C., Smith, A.: Sharing clearances to improve machine layout. Int. J. Prod. Res. 54(14), 4272–4285 (2016). Google Scholar
  78. 78.
    Zuo, X., Murray, C.C., Smith, A.E.: Solving an extended double row layout problem using multiobjective tabu search and linear programming. IEEE Trans. Autom. Sci. Eng. 11(4), 1122–1132 (2014)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2019

Authors and Affiliations

  1. 1.Faculty of Business and EconomicsTU Dortmund UniversityDortmundGermany
  2. 2.Institute of Computer ScienceJohannes Gutenberg University MainzMainzGermany
  3. 3.Institute for MathematicsAlpen-Adria Universität KlagenfurtKlagenfurtAustria

Personalised recommendations