Advertisement

Mathematical Programming Computation

, Volume 10, Issue 4, pp 631–658 | Cite as

ADMM for the SDP relaxation of the QAP

  • Danilo Elias Oliveira
  • Henry Wolkowicz
  • Yangyang Xu
Full Length Paper
  • 35 Downloads

Abstract

Semidefinite programming, SDP, relaxations have proven to be extremely strong for many hard discrete optimization problems. This is in particular true for the quadratic assignment problem, QAP, arguably one of the hardest NP-hard discrete optimization problems. There are several difficulties that arise in efficiently solving the SDP relaxation, e.g., increased dimension; inefficiency of the current primal–dual interior point solvers in terms of both time and accuracy; and difficulty and high expense in adding cutting plane constraints. We propose using the alternating direction method of multipliers ADMM in combination with facial reduction, FR, to solve the SDP relaxation. This first order approach allows for: inexpensive iterations, a method of cheaply obtaining low rank solutions; and a trivial way of exploiting the FR for adding cutting plane inequalities. In fact, we solve the doubly nonnegative, DNN, relaxation that includes both the SDP and all the nonnegativity constraints. When compared to current approaches and current best available bounds we obtain robustness, efficiency and improved bounds.

Keywords

Quadratic assignment problem Semidefinite programming relaxation Alternating direction method of multipliers Facial reduction Doubly nonnegative Large scale 

Mathematics Subject Classification

90C22 90B80 90C46 90C06 90-08 

References

  1. 1.
    Anstreicher, K.M.: Recent advances in the solution of quadratic assignment problems. Math. Program. 97(1–2), 27–42 (2003)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Anstreicher, K.M., Brixius, N.W.: A new bound for the quadratic assignment problem based on convex quadratic programming. Math. Program. 89(3), 341–357 (2001)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bhati, R.K., Rasool, A.: Quadratic assignment problem and its relevance to the real world: a survey. Int. J. Comput. Appl. 96(9), 42–47 (2014)Google Scholar
  4. 4.
    Birkhoff, G.: Three observations on linear algebra. Univ. Nac. Tucumán. Revista A 5, 147–151 (1946)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)CrossRefGoogle Scholar
  6. 6.
    Burer, S., Monteiro, R.D.C.: Local minima and convergence in low-rank semidefinite programming. Math. Program. 103(3), 427–444 (2005)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Burkard, R.E., Karisch, S., Rendl, F.: QAPLIB–a quadratic assignment problem library. Eur. J. Oper. Res. 55, 115–119 (1991)CrossRefGoogle Scholar
  8. 8.
    Burkard, R.E., Karisch, S.E., Rendl, F.: QAPLIB–a quadratic assignment problem library. J. Global Optim. 10(4), 391–403 (1997)MathSciNetCrossRefGoogle Scholar
  9. 9.
    de Klerk, E., Sotirov, R.: Exploiting group symmetry in semidefinite programming relaxations of the quadratic assignment problem. Math. Program. 122(2), 225–246 (2010)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Eckart, C., Young, G.: The approximation of one matrix by another of lower rank. Psychometrica 1(3), 211–218 (1936)CrossRefGoogle Scholar
  11. 11.
    Edwards, C.S.: A branch and bound algorithm for the Koopmans–Beckmann quadratic assignment problem. Math. Program. Study 13, 35–52 (1980)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Golub, G.H., Ye, Q.: An inverse free preconditioned Krylov subspace method for symmetric generalized eigenvalue problems. SIAM J. Sci. Comput. 24(1), 312–334 (2002). (electronic)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Ito, N., Kim, S., Kojima, M., Takeda, A., Toh, K.C.: Bbcpop: a sparse doubly nonnegative relaxation of polynomial optimization problems with binary, box and complementarity constraints. arXiv preprint arXiv:1804.00761 (2018)
  14. 14.
    Jain, R., Yao, P.: A parallel approximation algorithm for positive semidefinite programming. In: 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science—FOCS 2011, pp. 463–471. IEEE Computer Soc., Los Alamitos, CA (2011)Google Scholar
  15. 15.
    Jiang, Bo, Liu, Ya-Feng, Wen, Zaiwen: \(l_p\)-norm regularization algorithms for optimization over permutation matrices. SIAM J. Optim. 26(4), 2284–2313 (2016)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Kim, S., Kojima, M., Toh, K.-C.: A Lagrangian-DNN relaxation: a fast method for computing tight lower bounds for a class of quadratic optimization problems. Math. Program. 156(1–2), 161–187 (2016)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Koopmans, T.C., Beckmann, M.J.: Assignment problems and the location of economic activities. Econometrica 25, 53–76 (1957)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Lawler, E.L.: The quadratic assignment problem. Manag. Sci. 9, 586–599 (1963)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Liao, Z.: Branch and bound via ADMM for the quadratic assignment problem. Master’s thesis, University of Waterloo (2016)Google Scholar
  20. 20.
    Pardalos, P., Rendl, F., Wolkowicz, H.: The quadratic assignment problem: a survey and recent developments. In: Pardalos, P.M., Wolkowicz, H. (eds.) Quadratic Assignment and Related Problems (New Brunswick, NJ, 1993), pp. 1–42. American Mathematical Society, Providence, RI (1994)CrossRefGoogle Scholar
  21. 21.
    Pardalos, P., Wolkowicz, H. (eds.).: Quadratic assignment and related problems. American Mathematical Society, Providence, RI, 1994. Papers from the workshop held at Rutgers University, New Brunswick, New Jersey, May 20–21 (1993)Google Scholar
  22. 22.
    Pong, T.K., Sun, H., Wang, N., Wolkowicz, H.: Eigenvalue, quadratic programming, and semidefinite programming relaxations for a cut minimization problem. Comput. Optim. Appl. 63(2), 333–364 (2016)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Povh, J., Rendl, F.: Copositive and semidefinite relaxations of the quadratic assignment problem. Discret. Optim. 6(3), 231–241 (2009)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Rendl, F., Sotirov, R.: Bounds for the quadratic assignment problem using the bundle method. Math. Program. 109(2–3), 505–524 (2007)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Toh, K.C., Todd, M.J., Tütüncü, R.H.: SDPT3—a MATLAB software package for semidefinite programming, version 1.3. Optim. Methods Softw. 11(1–4), 545–581 (1999)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Wen, Z., Goldfarb, D., Yin, W.: Alternating direction augmented Lagrangian methods for semidefinite programming. Math. Program. Comput. 2(3–4), 203–230 (2010)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Yang, L., Sun, D., Toh, K.-C.: \({\rm SDPNAL}+\): a majorized semismooth Newton-CG augmented Lagrangian method for semidefinite programming with nonnegative constraints. Math. Program. Comput. 7(3), 331–366 (2015)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Zhao, Q., Karisch, S.E., Rendl, F., Wolkowicz, H.: Semidefinite programming relaxations for the quadratic assignment problem. J. Comb. Optim. 2(1), 71–109 (1998)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Zhao, X.Y., Sun, D., Toh, K.C.: A Newton-CG augmented lagrangian method for semidefinite programming. SIAM J. Optim. 20(4), 1737–1765 (2010)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature and The Mathematical Programming Society 2018

Authors and Affiliations

  • Danilo Elias Oliveira
    • 1
  • Henry Wolkowicz
    • 1
  • Yangyang Xu
    • 2
  1. 1.Department of Combinatorics and OptimizationUniversity of WaterlooWaterlooCanada
  2. 2.Department of Mathematical SciencesRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations