# The (not so) trivial lifting in two dimensions

- 89 Downloads

## Abstract

When generating cutting-planes for mixed-integer programs from multiple rows of the simplex tableau, the usual approach has been to relax the integrality of the non-basic variables, compute an intersection cut, then strengthen the cut coefficients corresponding to integral non-basic variables using the so-called trivial lifting procedure. Although of polynomial-time complexity in theory, this lifting procedure can be computationally costly in practice. For the case of two-row relaxations, we present a practical algorithm that computes trivial lifting coefficients in constant time, for arbitrary maximal lattice-free sets. Computational experiments confirm that the algorithm works well in practice.

## Keywords

Integer programming Lifting Cutting planes## Mathematics Subject Classification

90C11 90C57## Supplementary material

## References

- 1.Andersen, K., Louveaux, Q., Weismantel, R., Wolsey, L.: Inequalities from two rows of a simplex tableau. In: Fischetti, M., Williamson, D. (eds.) Integer Programming and Combinatorial Optimization, volume 4513 of Lecture Notes in Computer Science, pp. 1–15. Springer, Berlin (2007)Google Scholar
- 2.Averkov, G., Basu, A.: Lifting properties of maximal lattice-free polyhedra. Math. Program.
**154**(1–2), 81–111 (2015)MathSciNetCrossRefzbMATHGoogle Scholar - 3.Balas, E.: Intersection cuts—a new type of cutting planes for integer programming. Oper. Res.
**1**(19), 19–39 (1971)MathSciNetCrossRefzbMATHGoogle Scholar - 4.Balas, E., Jeroslow, R.G.: Strengthening cuts for mixed integer programs. Eur. J. Oper. Res.
**4**(4), 224–234 (1980)MathSciNetCrossRefzbMATHGoogle Scholar - 5.Basu, A., Bonami, P., Cornuéjols, G., Margot, F.: Experiments with two-row cuts from degenerate tableaux. INFORMS J. Comput.
**23**, 578–590 (2011)MathSciNetCrossRefzbMATHGoogle Scholar - 6.Basu, A., Campêlo, M., Conforti, M., Cornuéjols, G., Zambelli, G.: Unique lifting of integer variables in minimal inequalities. Math. Program.
**141**(1–2), 561–576 (2013)MathSciNetCrossRefzbMATHGoogle Scholar - 7.Borozan, V., Cornuéjols, G.: Minimal valid inequalities for integer constraints. Math. Oper. Res.
**34**(3), 538–546 (2009)MathSciNetCrossRefzbMATHGoogle Scholar - 8.Conforti, M., Cornuéjols, G., Zambelli, G.: Integer Programming, vol. 271. Springer, Berlin (2014)zbMATHGoogle Scholar
- 9.Dey, S.S., Lodi, A., Tramontani, A., Wolsey, L.A.: On the practical strength of two-row tableau cuts. INFORMS J. Comput.
**26**(2), 222–237 (2014)MathSciNetCrossRefzbMATHGoogle Scholar - 10.Dey, S.S., Louveaux, Q.: Split rank of triangle and quadrilateral inequalities. Math. Oper. Res.
**36**(3), 432–461 (2011)MathSciNetCrossRefzbMATHGoogle Scholar - 11.Dey, S.S., Wolsey, L.A.: Two row mixed-integer cuts via lifting. Math. Program.
**124**, 143–174 (2010)MathSciNetCrossRefzbMATHGoogle Scholar - 12.Espinoza, D.G.: Computing with multi-row Gomory cuts. Oper. Res. Lett.
**38**(2), 115–120 (2010)MathSciNetCrossRefzbMATHGoogle Scholar - 13.Fukasawa, R., Poirrier, L., Xavier, Á.S.: The (not so) trivial lifting in two dimensions: source code, Aug 2018. https://doi.org/10.5281/zenodo.1342770
- 14.Gomory, R.E.: Some polyhedra related to combinatorial problems. Linear Algebra Appl.
**2**(4), 451–558 (1969)MathSciNetCrossRefzbMATHGoogle Scholar - 15.Gomory, R.E., Johnson, E.L.: Some continuous functions related to corner polyhedra, part I. Math. Program.
**3**, 23–85 (1972)CrossRefzbMATHGoogle Scholar - 16.Gu, Z., Nemhauser, G.L., Savelsbergh, M.W.P.: Sequence independent lifting in mixed integer programming. J. Comb. Optim.
**4**, 109–129 (2000)MathSciNetCrossRefzbMATHGoogle Scholar - 17.Hurkens, C.A.J.: Blowing up convex sets in the plane. Linear Algebra Appl.
**134**, 121–128 (1990)MathSciNetCrossRefzbMATHGoogle Scholar - 18.Kannan, R., Lovász, L.: Covering Minima and Lattice Point Free Convex Bodies, pp. 193–213. Springer, Berlin (1986)zbMATHGoogle Scholar
- 19.Koch, T., Achterberg, T., Andersen, E., Bastert, O., Berthold, T., Bixby, R.E., Danna, E., Gamrath, G., Gleixner, A.M., Heinz, S., Lodi, A., Mittelmann, H., Ralphs, T., Salvagnin, D., Steffy, D.E., Wolter, K.: MIPLIB 2010. Math. Program. Comput.
**3**(2), 103–163 (2011)MathSciNetCrossRefGoogle Scholar - 20.Lenstra Jr., H.W.: Integer programming with a fixed number of variables. Math. Oper. Res.
**8**(4), 538–548 (1983)MathSciNetCrossRefzbMATHGoogle Scholar - 21.Louveaux, Q., Poirrier, L.: An algorithm for the separation of two-row cuts. Math. Program.
**143**(1–2), 111–146 (2014)MathSciNetCrossRefzbMATHGoogle Scholar - 22.Louveaux, Q., Poirrier, L., Salvagnin, D.: The strength of multi-row models. Math. Program. Comput.
**7**(2), 113–148 (2015)MathSciNetCrossRefzbMATHGoogle Scholar - 23.Oertel, T., Wagner, C., Weismantel, R.: Convex integer minimization in fixed dimension. http://arxiv.org/pdf/1203.4175v1.pdf (2012). Accessed 9 Aug 2018
- 24.Padberg, M.W.: On the facial structure of set packing polyhedra. Math. Program.
**5**(1), 199–215 (1973)MathSciNetCrossRefzbMATHGoogle Scholar