Mathematical Programming Computation

, Volume 4, Issue 4, pp 363–381 | Cite as

Maximum-weight stable sets and safe lower bounds for graph coloring

Full Length Paper

Abstract

The best method known for determining lower bounds on the vertex coloring number of a graph is the linear-programming column-generation technique, where variables correspond to stable sets, first employed by Mehrotra and Trick in 1996. We present an implementation of the method that provides numerically-safe results, independent of the floating-point accuracy of linear-programming software. Our work includes an improved branch-and-bound algorithm for maximum-weight stable sets and a parallel branch-and-price framework for graph coloring. Computational results are presented on a collection of standard test instances, including the unsolved challenge problems created by David S. Johnson in 1989.

Keywords

Graph coloring Fractional chromatic number Column generation Maximum-weight stable set Safe computations 

Mathematics Subject Classification

90-04 90-08 90C27 90C35 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andrade, D.V., Resende, M.G.C., Werneck, R.F.: Fast local search for the maximum independent set problem. In: Proceedings of workshop on experimental algorithms, pp. 220–234 (2008)Google Scholar
  2. 2.
    Applegate D.L., Cook W., Dash S., Espinoza D.G.: Exact solutions to linear programming problems. Oper. Res. Lett. 35(6), 693–699 (2007)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Babel L.: A fast algorithm for the maximum weight clique problem. Computing 52, 31–38 (1994)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Balas E., Xue J.: Minimum weighted coloring of triangulated graphs with application to maximum weight vertex packing and clique finding in arbitrary graphs. SIAM J. Comput. 20(2), 209–221 (1991)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Balas E., Yu C.: Finding a maximum clique in an arbitrary graph. SIAM J. Comput. 15(4), 1054–1068 (1986)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Balas, E., Niehaus, W.: A max-flow based procedure for finding heavy cliques in vertex-weighted graphs. Tech. Rep. MSRR No. 612, GSIA, Carnegie-Mellon University (1995)Google Scholar
  7. 7.
    Brélaz D.: New methods to color the vertices of a graph. Commun. ACM 22(4), 251–256 (1979)MATHCrossRefGoogle Scholar
  8. 8.
    Busygin S.: A new trust region technique for the maximum weight clique problem. Discret. Appl. Math. 154, 2080–2096 (2006)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Leighton F.T.: A graph coloring problem for large scheduling problems. J. Res. Natl. Bureau Stand. 84, 489–505 (1979)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Gualandi S., Malucelli F.: Exact solution of graph coloring problems via constraint programming and column generation. INFORMS J. Comput. 24(1), 81–100 (2012)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Hansen P., Labbé M., Schindl D.: Set covering and packing formulations of graph coloring: Algorithms and first polyhedral results. Discret. Optim. 6(2), 135–147 (2009)MATHCrossRefGoogle Scholar
  12. 12.
    Held S., Sewell, E.C., Cook, W.: Exact colors project webpage (2010). http://code.google.com/p/exactcolors/
  13. 13.
    Lund C., Yannakakis M.: On the hardness of approximating minimization problems. J. ACM 41(5), 960–981 (1994)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Malaguti E., Monaci M., Toth P.: An exact approach for the vertex coloring problem. Discret. Optim. 8(2), 174–190 (2011)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Malaguti E., Toth P.: A survey on vertex coloring problems. Int. Trans. Oper. Res. 17, 1–34 (2010)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Mehrotra A., Trick M.A.: A column generation approach for graph coloring. INFORMS J. Comput. 8(4), 344–354 (1996)MATHCrossRefGoogle Scholar
  17. 17.
    Mittelmann H.: Benchmarks for optimization software (2011). http://plato.asu.edu/bench.html
  18. 18.
    Mycielski J.: Sur le coloriage des graphes. Colloq. Math. 3, 161–162 (1955)MathSciNetMATHGoogle Scholar
  19. 19.
    Méndez-Díaz I., Zabala P.: A branch-and-cut algorithm for graph coloring. Discret. Appl. Math. 154(5), 826–847 (2006)MATHCrossRefGoogle Scholar
  20. 20.
    Méndez-Díaz I., Zabala P.: A cutting plane algorithm for graph coloring. Discret. Appl. Math. 156(2), 159–179 (2008)MATHCrossRefGoogle Scholar
  21. 21.
    Porumbel D.C., Hao J.K., Kuntz P.: An evolutionary approach with diversity guarantee and well-informed grouping recombination for graph coloring. Comput. Oper. Res. 37(10), 1822–1832 (2010)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Sewell E.C.: A branch and bound algorithm for the stability number of a sparse graph. INFORMS J. Comput. 10(4), 438–447 (1998)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Steffy, D.E.: Topics in exact precision mathematical programming. Ph.D. thesis, Georgia Institute of Technology (2011)Google Scholar
  24. 24.
    Titiloye O., Crispin, A.: Graph coloring with a distributed hybrid quantum annealing algorithm. In: Proceedings of the 5th KES international conference on agent and multi-agent systems: technologies and applications, KES-AMSTA’11, Springer, Berlin, pp. 553–562 (2011)Google Scholar
  25. 25.
    Titiloye O., Crispin A.: Quantum annealing of the graph coloring problem. Discret. Optim. 8(2), 376–384 (2011)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Trick M.: DIMACS graph coloring instances (2002). http://mat.gsia.cmu.edu/COLOR02/
  27. 27.
    Warren, J., Hicks, I.: Combinatorial branch-and-bound for the maximum weight independent set problem. Technical report, Texas A&M University (2006)Google Scholar
  28. 28.
    Wu Q., Hao J.K.: Coloring large graphs based on independent set extraction. Comput. Oper. Res. 39(2), 283–290 (2012)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Zuckerman D.: Linear degree extractors and the inapproximability of max clique and chromatic number. Theory Comput. 3(1), 103–128 (2007)MathSciNetCrossRefGoogle Scholar
  30. 30.
    P.R.J.: A new algorithm for the maximum-weight clique problem. Electron. Notes Discret. Math. 3, 153–156 (1999)CrossRefGoogle Scholar
  31. 31.
    Östergård, P.R.J., Niskanen, S.: Cliquer home page (2010). http://users.tkk.fi/pat/cliquer.html

Copyright information

© Springer and Mathematical Optimization Society 2012

Authors and Affiliations

  1. 1.Research Institute for Discrete MathematicsUniversity of BonnBonnGermany
  2. 2.H. Milton Stewart School of Industrial and Systems EngineeringGeorgia Institute of TechnologyAtlantaUSA
  3. 3.Department of Mathematics and StatisticsSouthern Illinois University EdwardsvilleEdwardsvilleUSA

Personalised recommendations