Mathematical Programming Computation

, Volume 4, Issue 3, pp 211–238 | Cite as

A computational study of a solver system for processing two-stage stochastic LPs with enhanced Benders decomposition

  • Victor Zverovich
  • Csaba I. Fábián
  • Eldon F. D. Ellison
  • Gautam Mitra
Full Length Paper


We report a computational study of two-stage SP models on a large set of benchmark problems and consider the following methods: (i) Solution of the deterministic equivalent problem by the simplex method and an interior point method, (ii) Benders decomposition (L-shaped method with aggregated cuts), (iii) Regularised decomposition of Ruszczyński (Math Program 35:309–333, 1986), (iv) Benders decomposition with regularization of the expected recourse by the level method (Lemaréchal et al. in Math Program 69:111–147, 1995), (v) Trust region (regularisation) method of Linderoth and Wright (Comput Optim Appl 24:207–250, 2003). In this study the three regularisation methods have been introduced within the computational structure of Benders decomposition. Thus second-stage infeasibility is controlled in the traditional manner, by imposing feasibility cuts. This approach allows extensions of the regularisation to feasibility issues, as in Fábián and Szőke (Comput Manag Sci 4:313–353, 2007). We report computational results for a wide range of benchmark problems from the POSTS and SLPTESTSET collections and a collection of difficult test problems compiled by us. Finally the scale-up properties and the performance profiles of the methods are presented.

Mathematics Subject Classification

49M27 65K05 90C05 90C06 90C15 90C51 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ariyawansa K.A. and Felt A.J. (2004). On a new collection of stochastic linear programming test problems. INFORMS J. Comput. 16(3): 291–299MathSciNetzbMATHCrossRefGoogle Scholar
  2. Beale E.M.L. (1955). On minimizing a convex function subject to linear inequalities. J. R. Stat. Soc. B 17: 173–184MathSciNetzbMATHGoogle Scholar
  3. Benders, J.F.: Partitioning procedures for solving mixed-variables programming problems. Numer. Math. 4, 238–252 (1962). Re-publised in Comput. Manag. Sci. 2, 3–19 (2005)Google Scholar
  4. Birge J.R. (1997). Stochastic programming computation and applications: state-of-the-art survey. INFORMS J. Comput. 9(2): 111–133 MathSciNetzbMATHCrossRefGoogle Scholar
  5. Birge J.R., Dempster M.A.H., Gassmann H.I., Gunn E.A., King A.J. and Wallace S.W. (1987). A standard input format for multiperiod stochastic linear programs. COAL Newslett. 17: 1–19 Google Scholar
  6. Birge J.R. and Louveaux F.V. (1988). A multicut algorithm for two-stage stochastic linear programs. Eur. J. Oper. Res. 34: 384–392 MathSciNetzbMATHCrossRefGoogle Scholar
  7. Birge J.R. and Louveaux F.V. (1997). Introduction to Stochastic Programming. Springer, New York zbMATHGoogle Scholar
  8. Colombo M. and Gondzio J. (2008). Further development of multiple centrality correctors for interior point methods. Comput. Optim. Appl. 41: 277–305 MathSciNetzbMATHCrossRefGoogle Scholar
  9. Colombo, M., Gondzio, J., Grothey, A.: A warm-start approach for large-scale stochastic linear programs. Math. Program. (2009). doi: 10.1007/s10107-009-0290-9
  10. Dantzig G.B. (1955). Linear programming under uncertainty. Manag. Sci. 1: 197–206 MathSciNetzbMATHCrossRefGoogle Scholar
  11. Dantzig, G.B., Madansky, A.: On the solution of two-stage linear programs under uncertainty. In: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 165–176. University of California Press, Berkeley (1961)Google Scholar
  12. Dantzig G.B. and Wolfe P. (1960). The decomposition principle for linear programs. Oper. Res. 8: 101–111 zbMATHCrossRefGoogle Scholar
  13. Di Domenica N., Lucas C., Mitra G. and Valente P. (2009). Scenario generation for stochastic programming and simulation: a modelling perspective. IMA J. Manag. Math. 20: 1–38 MathSciNetzbMATHCrossRefGoogle Scholar
  14. Dolan E.D. and Moré J.J. (2002). Benchmarking optimization software with performance profiles. Math. Program. 91(2): 201–213 MathSciNetzbMATHCrossRefGoogle Scholar
  15. Ellison, E.F.D., Mitra, G., Zverovich, V.: FortSP: a stochastic programming solver. OptiRisk Systems. (2010)
  16. Fábián, C.I.: Bundle-type methods for inexact data. Central Eur. J. Oper. Res. 8, 35–55 (2000). [Special issue, Csendes, T., Rapcsák, T. (eds.)]Google Scholar
  17. Fábián C.I. and Szőke Z. (2007). Solving two-stage stochastic programming problems with level decomposition. Comput. Manag. Sci. 4: 313–353 MathSciNetzbMATHCrossRefGoogle Scholar
  18. Fabozzi F.J., Focardi S. and Jonas C. (2007). Trends in quantitative equity management: survey results. Quant. Finance 7(2): 115–122 CrossRefGoogle Scholar
  19. Gassmann H. (1990). MSLiP: a computer code for the multistage stochastic linear programming problem. Math. Program. 47: 407–423 MathSciNetzbMATHCrossRefGoogle Scholar
  20. Gassmann H.I. and Wallace S.W. (1996). Solving linear programs with multiple right-hand sides: pricing and ordering schemes. Ann. Oper. Res. 64: 237–259 MathSciNetzbMATHCrossRefGoogle Scholar
  21. Gondzio J. (1995). HOPDM (version 2.12) a fast lp solver based on a primal-dual interior point method. Eur. J. Oper. Res. 85: 221–225 zbMATHCrossRefGoogle Scholar
  22. Holmes, D.: A (PO)rtable (S)tochastic programming (T)est (S)et (POSTS). (1995)
  23. Kall, P., Mayer, J.: On testing SLP codes with SLP-IOR. In: New trends in mathematical programming: homage to Steven Vajda, pp. 115–135. Kluwer, Boston (1998)Google Scholar
  24. Kall, P., Mayer, J.: Stochastic linear programming: models, theory, and computation. Springer, International Series in Operations Research and Management Science (2005)Google Scholar
  25. Kall P. and Wallace S.W. (1994). Stochastic Programming. Wiley, Chichester zbMATHGoogle Scholar
  26. Kiwiel K.C. (1985). Methods of Descent for Nondifferentiable Optimization. Springer, Berlin zbMATHGoogle Scholar
  27. König, D., Suhl, L., Koberstein, A.: Optimierung des Gasbezugs im liberalisierten Gasmarkt unter Berücksichtigung von Röhren- und Untertagespeichern. In: Sammelband zur VDI Tagung “Optimierung in der Energiewirtschaft” in Leverkusen (2007)Google Scholar
  28. Lemaréchal, C.: Nonsmooth optimization and descent methods. Research Report 78-4, IIASA, Laxenburg, Austria (1978)Google Scholar
  29. Lemaréchal C., Nemirovskii A. and Nesterov Y. (1995). New variants of bundle methods. Math. Program. 69: 111–147 zbMATHCrossRefGoogle Scholar
  30. Linderoth J. and Wright S. (2003). Decomposition algorithms for stochastic programming on a computational grid. Comput. Optim. Appl. 24: 207–250 MathSciNetzbMATHCrossRefGoogle Scholar
  31. Mayer J. (1998). Stochastic Linear Programming Algorithms. Gordon and Breach Science Publishers, Amsterdam zbMATHGoogle Scholar
  32. Mitra G., Di Domenica N., Birbilis G. and Valente P. (2007). Stochastic programming and scenario generation within a simulation framework: An information perspective. Decis. Support Syst. 42: 2197–2218 CrossRefGoogle Scholar
  33. Nemirovski A. (2005). Lectures in Modern Convex Optimization. ISYE, Georgia Institute of Technology Google Scholar
  34. Oliveira W., Sagastizábal C. and Scheimberg S. (2011). Inexact bundle methods for two-stage stochastic programming. SIAM J. Optim. 21: 517–544 MathSciNetzbMATHCrossRefGoogle Scholar
  35. Prékopa A. (1995). Stochastic Programming. Kluwer, Dordrecht Google Scholar
  36. Rockafellar R.T. (1976). Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14: 877–898 MathSciNetzbMATHCrossRefGoogle Scholar
  37. Ruszczyński A. (1986). A regularized decomposition method for minimizing a sum of polyhedral functions. Math. Program. 35: 309–333 zbMATHCrossRefGoogle Scholar
  38. Ruszczyński A. (2003). Decomposition methods. In: Ruszczyński, A. and Shapiro, A. (eds) Stochastic Programming. Handbooks in Operations Research and Management Science, vol. 10, pp 141–211. Elsevier, Amsterdam Google Scholar
  39. Ruszczyński A. (2006). Nonlinear Optimization. Princeton University Press, Princeton zbMATHGoogle Scholar
  40. Ruszczyński, A., Shapiro, A. : Stochastic programming models. In: Ruszczyński, A., Shapiro, A. (eds.) Stochastic Programming. Handbooks in Operations Research and Management Science, vol. 10, pp. 1–64. Elsevier, Amsterdam (2003)Google Scholar
  41. Ruszczyński A. and Świȩtanowski A. (1997). Accelerating the regularized decomposition method for two-stage stochastic linear problems. Eur. J. Oper. Res. 101: 328–342 zbMATHCrossRefGoogle Scholar
  42. Valente C., Mitra G., Sadki M. and Fourer R. (2009). Extending algebraic modelling languages for stochastic programming. INFORMS J. Comput. 21(1): 107–122 MathSciNetzbMATHCrossRefGoogle Scholar
  43. Valente, P., Mitra, G., Poojari, C., Ellison, E.F., Di Domenica, N., Mendi, M., Valente, C.: SAMPL/SPInE user manual. OptiRisk Systems. (2008)
  44. Van Slyke R. and Wets R.J.B. (1969). L-shaped linear programs with applications to optimal control and stochastic programming. SIAM J. Appl. Math. 17: 638–663 MathSciNetzbMATHCrossRefGoogle Scholar
  45. Wallace, S.W., Ziemba, W.T. (eds.): Applications of Stochastic Programming. Society for Industrial and Applied Mathematic (2005)Google Scholar
  46. Wets R.J.B. (1974). Stochastic programs with fixed recourse: the equivalent deterministic program. SIAM Rev. 16: 309–339 MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer and Mathematical Optimization Society 2012

Authors and Affiliations

  • Victor Zverovich
    • 1
  • Csaba I. Fábián
    • 3
    • 4
  • Eldon F. D. Ellison
    • 1
    • 2
  • Gautam Mitra
    • 1
    • 2
  1. 1.OptiRisk Systems, OptiRisk R&D HouseUxbridge, MiddlesexUK
  2. 2.The Centre for the Analysis of Risk and Optimisation Modelling Applications (CARISMA), School of Information Systems, Computing and MathematicsBrunel UniversityLondonUK
  3. 3.Institute of Informatics, Kecskemét CollegeKecskemétHungary
  4. 4.Department of ORLoránd Eötvös UniversityBudapestHungary

Personalised recommendations