Advertisement

Mathematical Programming Computation

, Volume 3, Issue 4, pp 281–318 | Cite as

Practical strategies for generating rank-1 split cuts in mixed-integer linear programming

  • Gerard Cornuéjols
  • Giacomo Nannicini
Full Length Paper

Abstract

In this paper we propose practical strategies for generating split cuts, by considering integer linear combinations of the rows of the optimal simplex tableau, and deriving the corresponding Gomory mixed-integer cuts; potentially, we can generate a huge number of cuts. A key idea is to select subsets of variables, and cut deeply in the space of these variables. We show that variables with small reduced cost are good candidates for this purpose, yielding cuts that close a larger integrality gap. An extensive computational evaluation of these cuts points to the following two conclusions. The first is that our rank-1 cuts improve significantly on existing split cut generators (Gomory cuts from single tableau rows, MIR, Reduce-and-Split, Lift-and-Project, Flow and Knapsack cover): on MIPLIB instances, these generators close 24% of the integrality gap on average; adding our cuts yields an additional 5%. The second conclusion is that, when incorporated in a Branch-and-Cut framework, these new cuts can improve computing time on difficult instances.

Mathematics Subject Classification (2000)

90C11 90C57 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Achterberg T., Koch T., Martin A.: MIPLIB 2003. Oper. Res. Lett. 34(4), 361–372 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Ajtai, M.: The shortest vector problem in l 2 is NP-hard for randomized reductions. In: Proceedings of the 30th Annual ACM Symposium on Theory of Computing. Dallas, TX (1998)Google Scholar
  3. 3.
    Andersen K., Cornuéjols G., Li Y.: Reduce-and-split cuts: improving the performance of mixed integer gomory cuts. Manag. Sci. 51(11), 1720–1732 (2005)CrossRefGoogle Scholar
  4. 4.
    Balas E.: Intersection cuts—a new type of cutting planes for integer programming. Oper. Res. 19(1), 19–39 (1971)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Balas E.: Disjunctive programming. Annal. Discret. Math. 5, 3–51 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Balas E., Bonami P.: Generating Lift-and-Project cuts from the LP simplex tableau: open source implementation and testing of new variants. Math. Program. Comput. 1, 165–199 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Balas E., Jeroslow R.G.: Strengthening cuts for mixed integer programs. Eur. J. Oper. Res. 4, 224–234 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Balas E., Saxena A.: Optimizing over the split closure. Math. Program. 113(2), 219–240 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Bixby R., Rothberg E.: Progress in computational mixed integer programming—a look back from the other side of the tipping point. Annal. Oper. Res. 149(1), 37–41 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Bixby R.E., Ceria S., McZeal C.M., Savelsbergh M.W.P.: An updated mixed integer programming library: MIPLIB 3.0. Optima 58, 12–15 (1998)Google Scholar
  11. 11.
    Bonami P., Cornuéjols G., Dash S., Fischetti M., Lodi A.: Projected Chvátal-Gomory cuts for mixed integer linear programs. Math. Program. 113, 241–257 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    COIN-OR Branch-and-Cut. https://projects.coin-or.org/Cbc. Accessed Oct 2010
  13. 13.
    COIN-OR Cut Generation Library. https://projects.coin-or.org/Cgl. Accessed Oct 2010
  14. 14.
    COIN-OR Linear Programming. https://projects.coin-or.org/Clp. Accessed Oct 2010
  15. 15.
    Cook W., Kannan R., Schrijver A.: Chvátal closures for mixed integer programming problems. Math. Program. 47, 155–174 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Cornuéjols, G., Liberti, L., Nannicini, G.: Improved strategies for branching on general disjunctions. Math. Program. A (2009). Published onlineGoogle Scholar
  17. 17.
    Dash S., Günlük O., Lodi A.: MIR closures of polyhedral sets. Math. Program. 121(1), 33–60 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Gomory R.E.: An algorithm for the mixed-integer problem. Tech. Rep. RM-2597, RAND Corporation, (1960)Google Scholar
  19. 19.
    Lenstra A.K., Lenstra H.W. Jr, Lovász L.: Factoring polynomials with rational coefficients. Mathematische Annalen 4(261), 515–534 (1982)CrossRefGoogle Scholar
  20. 20.
    Margot F.: Testing cut generators for mixed-integer linear programming. Math. Program. Comput. 1(1), 69–95 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Nemhauser G.L., Wolsey L.: A recursive procedure for generating all cuts for 0-1 mixed integer programs. Math. Program. 46, 379–390 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Papadimitriou C., Steiglitz K.: Combinatorial Optimization: Algorithms and Complexity. Dover, New York (1990)Google Scholar
  23. 23.
    Press, W., Teukolsky, S., Vetterling, W., Flannery, B.: Numerical Recipes in C, Second Edition. Cambridge University Press, Cambridge (1992, reprinted 1997)Google Scholar
  24. 24.
    Wolsey L.: Integer Programming. Wiley, New York (1998)zbMATHGoogle Scholar

Copyright information

© Springer and Mathematical Optimization Society 2011

Authors and Affiliations

  1. 1.Tepper School of BusinessCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations