Advertisement

MIPLIB 2010

Mixed Integer Programming Library version 5
  • Thorsten Koch
  • Tobias Achterberg
  • Erling Andersen
  • Oliver Bastert
  • Timo Berthold
  • Robert E. Bixby
  • Emilie Danna
  • Gerald Gamrath
  • Ambros M. Gleixner
  • Stefan Heinz
  • Andrea Lodi
  • Hans Mittelmann
  • Ted Ralphs
  • Domenico Salvagnin
  • Daniel E. Steffy
  • Kati Wolter
Full Length Paper

Abstract

This paper reports on the fifth version of the Mixed Integer Programming Library. The miplib 2010 is the first miplib release that has been assembled by a large group from academia and from industry, all of whom work in integer programming. There was mutual consent that the concept of the library had to be expanded in order to fulfill the needs of the community. The new version comprises 361 instances sorted into several groups. This includes the main benchmark test set of 87 instances, which are all solvable by today’s codes, and also the challenge test set with 164 instances, many of which are currently unsolved. For the first time, we include scripts to run automated tests in a predefined way. Further, there is a solution checker to test the accuracy of provided solutions using exact arithmetic.

Keywords

Mixed Integer Programming Problem instances IP MIP MIPLIB 

Mathematics Subject Classification (2000)

90C11 90C10 90C90 

References

  1. 1.
    Aardal K., Bixby R.E., Hurkens C.A.J., Lenstra A.K., Smeltink J.W.: Market split and basis reduction: towards a solution of the Cornuéjols–Dawande instances. INFORMS J. Comput. 12(3), 192–202 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Achterberg T., Berthold T.: Hybrid branching. In: van Hoeve, W.J., Hooker, J.N. (eds) Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, vol. 5547 of Lecture Notes in Computer Science, pp. 309–311. Springer, Berlin (2009)CrossRefGoogle Scholar
  3. 3.
    Achterberg T., Koch T., Martin A.: MIPLIB 2003. Oper. Res. Lett. 34(4), 361–372 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Achterberg, T., Koch, T., Tuchscherer, A.: On the effect of minor changes in model formulations. Technical Report ZR 08-29. Zuse Institute Berlin (2008)Google Scholar
  5. 5.
    Achterberg T., Raack C.: The MCF-separator—detecting and exploiting multi-commodity flows in MIPs. Math. Program. Comput. 2(2), 125–165 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Ahmadizadeh, K., Dilkina, B., Gomes, C.P., Sabharwal, A.: An empirical study of optimization for maximizing diffusion in networks. In: Principles and Practice of Constraint Programming, vol. 6308 of Lecture Notes in Computer Science, pp. 514–521 (2010)Google Scholar
  7. 7.
    Akartunalı, K., Miller, A.J.: Computational analysis of lower bounds for big bucket production planning problems. Technical Report, http://www.optimization-online.org/DB_HTML/2007/05/1668.html, Optimization Online (2007)
  8. 8.
    Akartunalı K., Miller A.J.: A heuristic approach for big bucket multi-level production planning problems. Eur. J. Oper. Res. 193, 396–411 (2009)zbMATHCrossRefGoogle Scholar
  9. 9.
    Akutsu, T., Hayashida, M., Tamura, T.: Integer programming-based methods for attractor detection and control of Boolean networks. In: Proceedings of the Combined 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, pp. 5610–5617 (2009)Google Scholar
  10. 10.
    Allen, S.D., Burke, E.K., Marecek, J.: A space-indexed formulation of packing boxes into a larger box. Technical Report. University of Nottingham (2010)Google Scholar
  11. 11.
    Amaldi E., Pfetsch M.E., Trotter L.E. Jr: On the maximum feasible subsystem problem, IISs, and IIS-hypergraphs. Math. Program. 95(3), 533–554 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Applegate D.L., Cook W., Dash S., Espinoza D.G.: Exact solutions to linear programming problems. Oper. Res. Lett. 35, 693–699 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Atamtürk A.: On capacitated network design cut-set polyhedra. Math. Program. 92, 425–437 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Atamtürk A.: On the facets of the mixed-integer knapsack polyhedron. Math. Program. 98, 145–175 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Atamtürk A., Rajan D.: On splittable and unsplittable capacitated network design arc-set polyhedra. Math. Program. 92, 315–333 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Bai L., Rubin P.A.: Combinatorial Benders cuts for the minimum tollbooth problem. Oper. Res. 57(6), 1510–1522 (2009)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Bai, L., Stamps, M.T., Harwood, R.C., Kollmann, C.J.: A genetic algorithm for the minimum tollbooth problem. In: Proceedings of the 2006 Meeting of the Decision Sciences Institute (2006)Google Scholar
  18. 18.
    Barutt J., Hull T.: Airline crew scheduling: supercomputers and algorithms. SIAM News 23(6), 20–22 (1990)Google Scholar
  19. 19.
    Belotti, P., Malucelli, F.: A Lagrangian relaxation approach for the design of networks with shared protection. In: Proceedings of the 2003 International Network Optimization Conference, pp. 72–77 (2003)Google Scholar
  20. 20.
    Benichou M., Gauthier J., Girodet P., Hentges G., Ribiere G., Vincent O.: Experiments in mixed-integer programming. Math. Program. 1, 76–94 (1971)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Bentz, W., Martens, M., Orlowski, S., Werner, A., Wessäly, R.: FTTx-PLAN: Optimierter Aufbau von FTTx-Netzen. In: Breitbandversorgung in Deutschland, vol. 220 of ITG-Fachbericht. VDE-Verlag, Berlin (2010)Google Scholar
  22. 22.
    Bixby R.E.: Solving real-world linear programs: a decade and more of progress. Oper. Res. 50(1), 3–15 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Bixby R.E., Boyd E.A., Indovina R.R.: MIPLIB: a test set of mixed integer programming problems. SIAM News 25, 16 (1992)Google Scholar
  24. 24.
    Bixby R.E., Ceria S., McZeal C., Savelsbergh M.: An updated mixed integer programming library: MIPLIB 3.0. Optima 58, 12–15 (1998)Google Scholar
  25. 25.
    Bley A., Boland N., Fricke C., Froyland G.: A strengthened formulation and cutting planes for the open pit mine production scheduling problem. Comput. Oper. Res. 37, 1641–1647 (2010)zbMATHCrossRefGoogle Scholar
  26. 26.
    Bley, A., Koch, T.: Integer programming approaches to access and backbone IP-network planning. Technical Report ZR 02-41. Zuse Institute Berlin (2002)Google Scholar
  27. 27.
    Bley, A., Menne, U., Klaehne, R., Raack, C., Wessaely, R.: Multi-layer network design—a model-based optimization approach. In: Proceedings of the 5th Polish-German Teletraffic Symposium, pp. 107–116 (2008)Google Scholar
  28. 28.
    Böcker S., Hüffner F., Truss A., Wahlström M.: A faster fixed-parameter approach to drawing binary tanglegrams. In: Chen, J., Fomin, F. (eds) Parameterized and Exact Computation, vol. 5917 of Lecture Notes in Computer Science, pp. 38–49. Springer, Berlin (2009)CrossRefGoogle Scholar
  29. 29.
    Borndörfer, R.: Aspects of Set Packing, Partitioning, and Covering. Ph.D. Thesis, Technische Universität Berlin. Shaker Verlag, Aachen (1998)Google Scholar
  30. 30.
    Borndörfer R., Grötschel M., Klostermeier F., Küttner C.: Telebus Berlin: vehicle scheduling in a dial-a-ride system. In: Wilson, N. (eds) Proceedings of the 7th International Workshop on Computer-Aided Transit Scheduling, vol. 471 of Lecture Notes in Economics and Mathematical Systems, pp. 391–422. Springer, Berlin (1999)Google Scholar
  31. 31.
    Borndörfer R., Liebchen C.: When periodic timetables are suboptimal. In: Kalcsics, J., Nickel, S. (eds) Operations Research Proceedings 2007, pp. 449–454. Springer, Berlin (2008)CrossRefGoogle Scholar
  32. 32.
    Borndörfer, R., Löbel, A., Weider, S.: A bundle method for integrated multi-depot vehicle and duty scheduling in public transit. In: Hickman, M., Mirchandani, P., Vo, S. (eds.) Computer-aided Systems in Public Transport, vol. 600 of Lecture Notes in Economics and Mathematical Systems, pp. 3–24 (2008)Google Scholar
  33. 33.
    Borndörfer, R., Schlechte, T.: Models for railway track allocation. In: Liebchen, C., Ahuja, R.K., Mesa, J.A. (eds.) Proceedings of the 7th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems. Dagstuhl Publishing, Germany (2007)Google Scholar
  34. 34.
    Bussieck M.R., Lindner T., Lübbecke M.E.: A fast algorithm for near optimal line plans. Math. Methods Oper. Res. 59(2), 205–220 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Caprara A., Fischetti M., Toth P.: A heuristic method for the set covering problem. Oper. Res. 47, 730–743 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Chabrier A., Danna E., Pape C.L., Perron L.: Solving a network design problem. Ann. Oper. Res. 130, 217–239 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Colbourn C., Dinitz J.: Handbook of Combinatorial Designs, 2nd ed. Chapman & Hall/CRC, Boca Raton (2006)CrossRefGoogle Scholar
  38. 38.
    Cook, W., Koch, T., Steffy, D., Wolter K.: An exact rational mixed-integer programming solver. Integer Program. Comb. Optim. (2011, in press)Google Scholar
  39. 39.
    Cornuéjols G., Dawande M.: A class of hard small 0-1 programs. INFORMS J. Comput. 11(2), 205–210 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Coughlan E., Lübbecke M., Schulz J.: A branch-and-price algorithm for multi-mode resource leveling. In: Festa, P. (eds) Experimental Algorithms, vol. 6049 of Lecture Notes in Computer Science, pp. 226–238. Springer, Berlin (2010)Google Scholar
  41. 41.
    Curet N.D.: The network diversion problem. Mil. Oper. Res. 6(2), 35–44 (2001)Google Scholar
  42. 42.
    Danna, E.: Performance variability in mixed integer programming. Presentation at Workshop on Mixed Integer Programming (2008)Google Scholar
  43. 43.
    Dattorro J.: Convex Optimization & Euclidean Distance Geometry. Meboo Publishing, USA (2011)Google Scholar
  44. 44.
    Dawande M., Gavirneni S., Tayur S.: Effective heuristics for multiproduct partial shipment models. Oper. Res. 54(2), 337–352 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Dawande, M., Kalagnanam, J.: The multiple knapsack problem with color constraints. Research Report RC 21138. IBM (1998)Google Scholar
  46. 46.
    Dittel, A., Fügenschuh, A., Martin, A.: Polyhedral aspects of self-avoiding walks. Technical Report ZR 11-11. Zuse Institute Berlin (2011)Google Scholar
  47. 47.
    Dolan E.D., Moré J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Eckstein, J.: Control strategies for parallel mixed integer branch and bound. In: Proceedings of Supercomputing 1994, pp. 41–48. IEEE Computer Society Press, Washington (1994)Google Scholar
  49. 49.
    Eckstein J.: Parallel branch-and-bound methods for mixed integer programming. SIAM News 27(1), 12–15 (1994)MathSciNetGoogle Scholar
  50. 50.
    Eckstein J.: Parallel branch-and-bound methods for mixed integer programming on the CM-5. SIAM J. Optim. 4(4), 794–814 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Eisenblätter, A., Fügenschuh, A., Fledderus, E., Geerdes, H.-F., Heideck, B., Junglas, D., Koch, T., Kürner, T., Martin, A.: Mathematical methods for automatic optimization of UMTS radio networks. Technical Report D4.3, IST-2000-28088 MOMENTUM (2003)Google Scholar
  52. 52.
    Espinoza, D.G.: On linear programming, integer programming and cutting planes. PhD Thesis. Georgia Institute of Technology (2006)Google Scholar
  53. 53.
    Ferris M.C., Pataki G., Schmieta S.: Solving the seymour problem. Optima 66, 2–6 (2001)Google Scholar
  54. 54.
    Fischetti M., Glover F., Lodi A.: The feasibility pump. Math. Program. 104, 91–104 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Fischetti M., Lodi A.: Local branching. Math. Program. 98, 23–47 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    Forrest J.J.H., Kalagnanam J., Ladanyi L.: A column-generation approach to the multiple knapsack problem with color constraints. INFORMS J. Comput. 18(1), 129–134 (2006)MathSciNetCrossRefGoogle Scholar
  57. 57.
    Fourer R., Gay D.M., Kernighan B.W.: AMPL: A Modelling Language for Mathematical Programming, 2nd ed. Duxbury Press, Brooks/Cole Publishing Company, Monterey (2002)Google Scholar
  58. 58.
    Gaden, D., Küçükyavuz, S.: Deterministic lot sizing with service levels. Technical Report. http://www.optimization-online.org/DB_HTML/2010/12/2844.html, Optimization Online (2010)
  59. 59.
    Galati, M.: Decomposition Methods for Integer Linear Programming. PhD Thesis. Lehigh University (2010)Google Scholar
  60. 60.
    Goldberg D.: What every computer scientist should know about floating-point arithmetic. ACM Comput. Surv. 23(1), 5–48 (1991)CrossRefGoogle Scholar
  61. 61.
    Goldengorin B., Krushinsky D.: Complexity evaluation of benchmark instances for the p-median problem. Math. Comput. Model. 53(9–10), 1719–1736 (2011)CrossRefGoogle Scholar
  62. 62.
    Golub G.H., Van Loan C.F.: Matrix Computations, 3rd ed. Johns Hopkins University Press, Baltimore (1996)zbMATHGoogle Scholar
  63. 63.
    Goossens J.-W., van Hoesel S., Kroon L.G.: A branch-and-cut approach for solving railway line-planning problems. Transp. Sci. 38(3), 379–393 (2004)CrossRefGoogle Scholar
  64. 64.
    Grötschel M., Borndörfer R., Löbel A.: Duty scheduling in public transit. In: Jäger, W., Krebs, H.-J. (eds) MATHEMATICS—Key Technology for the Future, pp. 653–674. Springer, Berlin (2003)CrossRefGoogle Scholar
  65. 65.
    Günlük O., Bienstock D.: Computational experience with a difficult mixed-integer multicommodity flow problem. Math. Program. 68, 213–237 (1995)zbMATHGoogle Scholar
  66. 66.
    Helmberg C., Röhl S.: A case study of joint online truck scheduling and inventory management for multiple warehouses. Oper. Res. 55(4), 733–752 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  67. 67.
    Holub, P., Rudová, H., Liška, M.: Data transfer planning with tree placement for collaborative environments. Constraints (2011, in press)Google Scholar
  68. 68.
    Hüffner F., Betzler N., Niedermeier R.: Separator-based data reduction for signed graph balancing. J. Comb. Optim. 20, 335–360 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  69. 69.
    Jünger, M., Liebling, T., Naddef, D., Nemhauser, G.L., Pulleyblank, W.R., Reinelt, G., Rinaldi, G., Wolsey, L.A. (eds): 50 Years of Integer Programming 1958–2008. Springer, Berlin (2009)Google Scholar
  70. 70.
    Koch, T.: Rapid Mathematical Programming. PhD Thesis. Technische Universität Berlin (2004)Google Scholar
  71. 71.
    Lau, A.: Erstellen von wegeoptimierten Stundenplänen mit Diskreten Methoden. Diploma Thesis. Technische Universität Chemnitz (2008)Google Scholar
  72. 72.
    Laundy R., Perregaard M., Tavares G., Tipi H., Vazacopoulos A.: Solving hard mixed integer programming problems with Xpress-MP: a MIPLIB 2003 case study. INFORMS J. Comput. 21, 304–319 (2009)MathSciNetCrossRefGoogle Scholar
  73. 73.
    Liebchen, C., Möhring, R.H.: Information on the MIPLIB’s timetab-instances. Technical Report 2003/49. Technische Universität Berlin, Department of Mathematics (2003)Google Scholar
  74. 74.
    Linderoth J.T., Lee E.K., Savelsbergh M.W.P.: A parallel, linear programming based heuristic for large scale set partitioning problems. INFORMS J. Comput. 13, 191–209 (2001)MathSciNetCrossRefGoogle Scholar
  75. 75.
    Linderoth J.T., Lodi A.: MILP software. In: Cochran, J. (eds) Wiley Encyclopedia of Operations Research and Management Science, vol. 5, pp. 3239–3248. Wiley, New York (2011)Google Scholar
  76. 76.
    Linderoth J.T., Savelsbergh M.W.P.: A computational study of search strategies for mixed integer programming. INFORMS J. Comput. 11, 173–187 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  77. 77.
    Lodi A.: MIP computation. In: Jünger, M., Liebling, T., Naddef, D., Nemhauser, G., Pulleyblank, W., Reinelt, G., Rinaldi, G., Wolsey, L. (eds) 50 Years of Integer Programming 1958–2008, pp. 619–645. Springer, Berlin (2009)Google Scholar
  78. 78.
    Luzzi, I.: Exact and Heuristic Methods for Nesting Problems. PhD Thesis. University of Padova (2002)Google Scholar
  79. 79.
    Margot F.: Small covering designs by branch-and-cut. Math. Program. B 94, 207–220 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  80. 80.
    Martin, A.: Integer Programs with Block Structure. Habilitations-Schrift, Technische Universität Berlin (1998)Google Scholar
  81. 81.
    Meirich, R.: Polyedrische Untersuchung eines Linienplanungsproblems. Diploma Thesis. Technische Universität Berlin (2010)Google Scholar
  82. 82.
    Miyashiro R., Yano Y., Muramatsu M.: On the maximum number of strings in go. Trans. Inf. Proces. Soc. Jpn. 48(11), 3463–3469 (2007)MathSciNetGoogle Scholar
  83. 83.
    Nemhauser G.L., Trick M.A.: Scheduling a major college basketball conference. Oper. Res. 46(1), 1–8 (1998)CrossRefGoogle Scholar
  84. 84.
    Orlowski S., Pióro M., Tomaszewski A., Wessäly R.: SNDlib 1.0—Survivable Network Design Library. Networks 55(3), 276–286 (2010)Google Scholar
  85. 85.
    Ortega F., Wolsey L.: A branch-and-cut algorithm for the single-commodity, uncapacitated, fixed-charge network flow problem. Networks 41(3), 143–158 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  86. 86.
    Ostrowski J., Linderoth J., Rossi F., Smriglio S.: Solving large Steiner triple covering problems. Oper. Res. Lett. 39, 127–131 (2011)CrossRefGoogle Scholar
  87. 87.
    Panton D.M., Elbers A.W.: Mission planning for synthetic aperture radar surveillance. Interfaces 29(2), 73–88 (1999)CrossRefGoogle Scholar
  88. 88.
    Peeters, L.: Cyclic Railway Timetable Optimization. PhD Thesis. Erasmus Universiteit Rotterdam (2003)Google Scholar
  89. 89.
    Pfender, T.: Arboreszenz-Flüsse in Graphen: polyedrische Untersuchungen. Diploma Thesis. Technische Universität Berlin (2000)Google Scholar
  90. 90.
    Pfetsch M.E.: Branch-and-cut for the maximum feasible subsystem problem. SIAM J. Optim. 19, 21–38 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  91. 91.
    Pochet Y., Vyve M.V.: A general heuristic for production planning problems. INFORMS J. Comput. 16(3), 316–327 (2004)MathSciNetCrossRefGoogle Scholar
  92. 92.
    Polo, C.: Algoritmi euristici per il progetto ottimo di una rete di interconnessione. Technical Report. Testi di laurea in Ingegneria Informatica, Universitità degli Studi di Padova (2002)Google Scholar
  93. 93.
    Raack C., Koster A.M.C.A., Orlowski S., Wessäly R.: On cut-based inequalities for capacitated network design polyhedra. Networks 57(2), 141–156 (2011)zbMATHGoogle Scholar
  94. 94.
    Reuter, A.: Kombinatorische Auktionen und ihre Anwendungen im Schienenverkehr. Diploma Thesis. Technische Universität Berlin (2005)Google Scholar
  95. 95.
    Schilly, H.: Modellierung und Implementation eines Vorlesungsplaners. Diploma Thesis. Universität Wien (2007)Google Scholar
  96. 96.
    Sheldon, D., Dilkina, B., Elmachtoub, A., Finseth, R., Sabharwal, A., Conrad, J., Gomes, C.P., Shmoys, D., Allen, W., Amundsen, O., Vaughan, B.: Maximizing spread of cascades using network design. In: Proceedings of the 26th Conference on Uncertainty in Artificial Intelligence, pp. 517–526 (2010)Google Scholar
  97. 97.
    Shinano, Y., Achterberg, T., Berthold, T., Heinz, S., Koch, T.: ParaSCIP—a parallel extension of SCIP. Technical Report ZR 10-27. Zuse Institute Berlin (2010)Google Scholar
  98. 98.
    Stadtler H.: Multilevel lot sizing with setup times and multiple constrained resources: Internally rolling schedules with lot-sizing windows. Oper. Res. 51(3), 487–502 (2003)zbMATHCrossRefGoogle Scholar
  99. 99.
    Sun M., Aronson J.E., McKeown P.G., Drinka D.A.: A tabu search heuristic procedure for the fixed charge transportation problem. Eur. J. Oper. Res. 106, 441–456 (1998)zbMATHCrossRefGoogle Scholar
  100. 100.
    Torres Carvajal, L.M.: Online Vehicle Routing. PhD Thesis. Technische Universität Berlin (2003)Google Scholar
  101. 101.
    Troubil, P., Rudová, H.: Integer programming for media streams planning problem. In: Matyska, L., Kozubek, M., Vojnar, T., Zemcík, P., Antos, D. (eds.) In: Proceedings of the Sixth Doctoral Workshop on Mathematical and Engineering Methods in Computer Science, vol. 16 of Open Access Series in Informatics, pp. 116–123. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Germany (2011)Google Scholar
  102. 102.
    Walser, J.P.: Radar surveillance. http://www.ps.uni-saarland.de/~walser/radar/radar.html (1997)
  103. 103.
    Walser, J.P.: Solving linear pseudo-boolean constraint problems with local search. In: Proceedings of the 14th National Conference on Artificial Intelligence and 9th Conference on Innovative Applications of Artificial Intelligence, pp. 269–274. AAAI Press, California (1997)Google Scholar
  104. 104.
    Walser, J.P.: Solving the ACC basketball scheduling problem with integer local search. http://www.ps.uni-saarland.de/~walser/acc/acc.html (1998)
  105. 105.
    Weider, S.: Integration of Vehicle and Duty Scheduling in Public Transport. PhD Thesis. Technische Universität Berlin (2007)Google Scholar
  106. 106.
    Wolsey L.A.: Integer Programming. Wiley-Interscience, New York (1998)zbMATHGoogle Scholar
  107. 107.
    Yunes, T.: CuSPLIB 1.0: A library of single-machine cumulative scheduling problems. http://moya.bus.miami.edu/~tallys/cusplib/ (2009)
  108. 108.
    Berkeley Computational Optimization Lab-Data Sets. http://ieor.berkeley.edu/~atamturk/data/
  109. 109.
  110. 110.
  111. 111.
    DEIS-Operations Research Group Library of Instances. http://www.or.deis.unibo.it/research_pages/ORinstances/MIPs.html
  112. 112.
    Eternity II puzzle. http://www.eternityii.com
  113. 113.
    GNU linear programming toolkit version 4.45. http://www.gnu.org/software/glpk
  114. 114.
    GMP, GNU multiple precision arithmetic library. http://gmplib.org
  115. 115.
    Management of Inter-Warehouse-Logistics for Stochastic Demand. http://www.tu-chemnitz.de/mathematik/discrete/projects/warehouse_trucks/index.html
  116. 116.
  117. 117.
    IEEE standard 754-2008 for floating-point arithmetic (2008)Google Scholar
  118. 118.
    Challenge Problems: Independent Sets in Graphs. http://www2.research.att.com/~njas/doc/graphs.html
  119. 119.
  120. 120.
    MULTILSB: Multi-Item Lot-Sizing with Backlogging. http://personal.strath.ac.uk/kerem.akartunali/research/multi-lsb/
  121. 121.
    NEOS Server for Optimization. http://www.neos-server.org
  122. 122.
    Pseudo-Boolean Competition 2010. http://www.cril.univ-artois.fr/PB10/
  123. 123.
  124. 124.
  125. 125.
  126. 126.

Copyright information

© Springer and Mathematical Optimization Society 2011

Authors and Affiliations

  • Thorsten Koch
    • 1
  • Tobias Achterberg
    • 2
  • Erling Andersen
    • 3
  • Oliver Bastert
    • 4
  • Timo Berthold
    • 1
  • Robert E. Bixby
    • 5
  • Emilie Danna
    • 6
  • Gerald Gamrath
    • 1
  • Ambros M. Gleixner
    • 1
  • Stefan Heinz
    • 1
  • Andrea Lodi
    • 7
  • Hans Mittelmann
    • 8
  • Ted Ralphs
    • 9
  • Domenico Salvagnin
    • 10
  • Daniel E. Steffy
    • 1
  • Kati Wolter
    • 1
  1. 1.Zuse Institute BerlinBerlinGermany
  2. 2.IBM DeutschlandBöblingenGermany
  3. 3.MOSEKCopenhagenDenmark
  4. 4.FICOMunichGermany
  5. 5.GurobiHoustonUSA
  6. 6.GoogleMountain ViewUSA
  7. 7.University of BolognaBolognaItaly
  8. 8.Arizona State UniversityTempeUSA
  9. 9.Lehigh UniversityBethlehemUSA
  10. 10.Università degli Studi di PadovaPaduaItaly

Personalised recommendations