Mathematical Programming Computation

, Volume 1, Issue 2–3, pp 119–163 | Cite as

General k-opt submoves for the Lin–Kernighan TSP heuristic

Full Length Paper

Abstract

Local search with k-exchange neighborhoods, k-opt, is the most widely used heuristic method for the traveling salesman problem (TSP). This paper presents an effective implementation of k-opt in LKH-2, a variant of the Lin–Kernighan TSP heuristic. The effectiveness of the implementation is demonstrated with experiments on Euclidean instances ranging from 10,000 to 10,000,000 cities. The runtime of the method increases almost linearly with the problem size. LKH-2 is free of charge for academic and non-commercial use and can be downloaded in source code.

Keywords

Traveling salesman problem TSP Lin–Kernighan k-opt 

Mathematics Subject Classification (2000)

90C27 90C35 90C59 

References

  1. 1.
    Applegate, D., Bixby, R., Chvátal, V., Cook, W.: Concorde: a code for solving traveling salesman problems. http://www.tsp.gatech.edu/concorde.html (1999)
  2. 2.
    Applegate, D., Bixby R., Chvátal V., Cook W.: Finding tours in the TSP. Technical Report 99885, Forschungsinstitut für Diskrete Mathematik, Universität Bonn (1999)Google Scholar
  3. 3.
    Applegate D., Bixby R., Chvátal V., Cook W.: Implementing the Dantzig–Fulkerson–Johnson algorithm for large traveling salesman problems. Math. Prog. 97, 91–153 (2003)MATHGoogle Scholar
  4. 4.
    Applegate D., Cook W., Rohe A.: Chained Lin–Kernighan for large traveling salesman problems. INFORMS J. Comput. 15, 82–92 (2003)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Bergeron A.: A very elementary presentation of the Hannenhalli–Pevzner theory. LNCS 2089, 106–117 (2001)MathSciNetGoogle Scholar
  6. 6.
    Caprara, A.: Sorting by reversals is difficult. In: Proceedings of the First International Conference on Computational Molecular Biology, pp. 75–83 (1997)Google Scholar
  7. 7.
    Chandra, B., Karloff, H., Tovey, C.: New results on the old k-opt algorithm for the TSP. In: Proceedings of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 150–159 (1994)Google Scholar
  8. 8.
    Christofides N., Eilon S.: Algorithms for large-scale traveling salesman problems. Oper. Res. Quart. 23, 511–518 (1972)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Fredman M.L., Johnson D.S., McGeoch L.A., Ostheimer G.: Data structures for traveling salesmen. J. Algorithms 18(3), 432–479 (1995)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Funke B., Grünert T., Irnich S.: Local search for vehicle routing and scheduling problems: review and conceptual integration. J. Heuristics 11, 267–306 (2005)MATHCrossRefGoogle Scholar
  11. 11.
    Gutin G., Punnen A.P.: Traveling Salesman Problem and Its Variations. Kluwer, Dordrecht (2002)MATHGoogle Scholar
  12. 12.
    Hanlon P.J., Stanley R.P., Stembridge J.R.: Some combinatorial aspects of the spectra of normally distributed random matrices. Contemp. Math. 138, 151–174 (1992)MathSciNetGoogle Scholar
  13. 13.
    Hannenhalli, S., Pevzer, P.A.: Transforming cabbage into turnip: polynomial algorithm for sorting signed permutations by reversals. In: Proceedings of the 27th ACM-SIAM Symposium on Theory of Computing, pp. 178–189 (1995)Google Scholar
  14. 14.
    Held M., Karp R.M.: The traveling-salesman problem and minimum spanning trees. Oper. Res. 18, 1138–1162 (1970)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Held M., Karp R.M.: The traveling-salesman problem and minimum spanning trees: Part II. Math. Prog. 1, 6–25 (1971)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Helsgaun K.: An effective implementation of the Lin–Kernighan traveling salesman heuristic. EJOR 12, 106–130 (2000)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Hoos H.H., Stützle T.: Stochastic Local Search: Foundations and Applications. Morgan Kaufmann, Menlo Park (2004)Google Scholar
  18. 18.
    Johnson D.S.: Local optimization and the traveling salesman problem. LNCS 442, 446–461 (1990)Google Scholar
  19. 19.
    Johnson, D.S., McGeoch, L.A., Rothberg, E.E.: Asymptotic experimental analysis for the Held–Karp traveling salesman bound. In: Proceedings of 7th Ann. ACM-SIAM Symp. on Discrete Algorithms, pp. 341–350 (1996)Google Scholar
  20. 20.
    Johnson D.S., McGeoch L.A.: The traveling salesman problem: a case study in local optimization. In: Aarts, E.H.L., Lenstra, J.K. (eds) Local Search in Combinatorial Optimization, pp. 215–310. Wiley, New York (1997)Google Scholar
  21. 21.
    Johnson, D.S., McGeoch, L.A., Glover, F., Rego, C.: Proceedings of the 8th DIMACS Implementation Challenge: The Traveling Salesman Problem. http://www.research.att.com/~dsj/chtsp/ (2000)
  22. 22.
    Johnson, D.S., McGeoch, L.A.: Experimental analysis of heuristics for the STSP. In: Gutin, G, Punnen, A., (eds.) The Traveling Salesman Problem and Its Variations, pp. 369–443 (2002)Google Scholar
  23. 23.
    Kaplan, H., Shamir, R., Tarjan, R.E.: Faster and simpler algorithm for sorting signed permutations by reversals. In: Proceedings of 8th annual ACM-SIAM Symp. on Discrete Algorithms (SODA 97), pp. 344–351 (1997)Google Scholar
  24. 24.
    Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B. (eds.): The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization. Wiley, New York (1985)Google Scholar
  25. 25.
    Lin S., Kernighan B. W.: An effective heuristic algorithm for the traveling-salesman problem. Oper. Res. 21, 498–516 (1973)MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Mak K.T., Morton A.J.: Distances between traveling salesman tours. Discret. Appl. Math. 58, 281–291 (1995)MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Martin O., Otto S.W., Felten E.W.: Large-step Markov chains for the TSP incorporating local search heuristics. Oper. Res. Lett. 11, 219–224 (1992)MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Mendivil D., Shonkwiler R., Spruill M.C.: An analysis of random restart and iterated improvement for global optimization with an application to the traveling salesman problem. J. Optim. Theory Appl. 124(4), 407–433 (2005)MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Möbius A., Freisleben B., Merz P., Schreiber M.: Combinatorial optimization by iterative partial transcription. Phys. Rev. E 59(4), 4667–4674 (1999)CrossRefGoogle Scholar
  30. 30.
    Neto, D.: Efficient Cluster Compensation For Lin–Kernighan Heuristics. PhD thesis, University of Toronto (1999)Google Scholar
  31. 31.
    Okada, M.: Studies on Probabilistic Analysis of λ-opt for Traveling Salesperson Problems. Doctor’s thesis, Nara Institute of Science and Technology (1999)Google Scholar
  32. 32.
    Tannier, E., Sagot, M.: Sorting by reversals in subquadratic time. Rapport de recherche No 5097, l’INRIA (2004)Google Scholar
  33. 33.
    The On-Line Encyclopedia of Integer Sequences. http://www.research.att.com/~njas/sequences/A061714
  34. 34.
    Zhang, W., Looks, M.: A Novel Local Search Algorithm for the Traveling Salesman Problem that Exploits Backbones. IJCAI 2005, pp. 343–350 (2005)Google Scholar

Copyright information

© Springer and Mathematical Programming Society 2009

Authors and Affiliations

  1. 1.Department of Communication, Business and Information TechnologiesRoskilde UniversityRoskildeDenmark

Personalised recommendations