Mathematical Programming Computation

, Volume 1, Issue 1, pp 1–41 | Cite as

SCIP: solving constraint integer programs

Full length paper

Abstract

Constraint integer programming (CIP) is a novel paradigm which integrates constraint programming (CP), mixed integer programming (MIP), and satisfiability (SAT) modeling and solving techniques. In this paper we discuss the software framework and solver SCIP (Solving Constraint Integer Programs), which is free for academic and non-commercial use and can be downloaded in source code. This paper gives an overview of the main design concepts of SCIP and how it can be used to solve constraint integer programs. To illustrate the performance and flexibility of SCIP, we apply it to two different problem classes. First, we consider mixed integer programming and show by computational experiments that SCIP is almost competitive to specialized commercial MIP solvers, even though SCIP supports the more general constraint integer programming paradigm. We develop new ingredients that improve current MIP solving technology. As a second application, we employ SCIP to solve chip design verification problems as they arise in the logic design of integrated circuits. This application goes far beyond traditional MIP solving, as it includes several highly non-linear constraints, which can be handled nicely within the constraint integer programming framework. We show anecdotally how the different solving techniques from MIP, CP, and SAT work together inside SCIP to deal with such constraint classes. Finally, experimental results show that our approach outperforms current state-of-the-art techniques for proving the validity of properties on circuits containing arithmetic.

Keywords

Constraint programming Integer programming SAT 

Mathematics Subject Classification (2000)

Primary: 90C11 Secondary: 90-04 90-08 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Achterberg T.: Conflict analysis in mixed integer programming. Discret. Optim. 4(1), 4–20 (2007) (special issue: Mixed Integer Programming)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Achterberg, T.: Constraint Integer Programming. Ph.D. Thesis, Technische Universität Berlin (2007). http://opus.kobv.de/tuberlin/volltexte/2007/1611/
  3. 3.
    Achterberg T., Berthold T.: Improving the feasibility pump. Discret. Optim. 4(1), 77–86 (2007) (special issue: Mixed Integer Programming)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Achterberg, T., Berthold, T., Koch, T., Wolter, K.: Constraint integer programming: a new approach to integrate CP and MIP. In: Perron, L., Trick, M.A. (eds.) Integration of AI and OR techniques in constraint programming for combinatorial optimization problems, 5th international conference, CPAIOR 2008. Lecture Notes in Computer Science, vol. 5015, pp. 6–20. Springer, Heidelberg (2008)Google Scholar
  5. 5.
    Achterberg, T., Brinkmann, R., Wedler, M.: Property checking with constraint integer programming. Technical Report 07-37, Zuse Institute Berlin (2007). http://opus.kobv.de/zib/volltexte/2007/1065/
  6. 6.
    Achterberg T., Grötschel M., Koch T.: Teaching MIP modeling and solving. ORMS Today 33(6), 14–15 (2006)Google Scholar
  7. 7.
    Achterberg T., Koch T., Martin A.: Branching rules revisited. Oper. Res. Lett. 33, 42–54 (2005)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Achterberg T., Koch T., Martin A.: MIPLIB 2003. Oper. Res. Lett. 34(4), 1–12 (2006)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Akers S.B.: Binary decision diagrams. IEEE Trans. Comput. C-27(6), 509–516 (1978)CrossRefGoogle Scholar
  10. 10.
    Althaus, E., Bockmayr, A., Elf, M., Jünger, M., Kasper, T., Mehlhorn, K.: SCIL—symbolic constraints in integer linear programming. Technical Report ALCOMFT-TR-02-133, MPI Saarbrücken, May (2002)Google Scholar
  11. 11.
    Anders, C.: Das Chordalisierungspolytop und die Berechnung der Baumweite eines Graphen. Master’s Thesis, Technische Universität Berlin (2006)Google Scholar
  12. 12.
    Andreello G., Caprara A., Fischetti M.: Embedding cuts in a branch&cut framework: a computational study with \({\{0,\frac{1}{2}\}}\) -cuts. INFORMS J. Comput. 19(2), 229–238 (2007)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Applegate D.L., Bixby R.E., Chvátal V., Cook W.J.: The Traveling Salesman Problem. Princeton University Press, Princeton (2006)MATHGoogle Scholar
  14. 14.
    Armbruster, M.: Branch-and-Cut for a Semidefinite Relaxation of the Minimum Bisection Problem. Ph.D. Thesis, Technische Universität Chemnitz (2007)Google Scholar
  15. 15.
    Armbruster, M., Fügenschuh, M., Helmberg, C., Martin, A.: Experiments with linear and semidefinite relaxations for solving the minimum graph bisection problem. Technical Report, Darmstadt University of Technology (2006)Google Scholar
  16. 16.
    Armbruster, M., Fügenschuh, M., Helmberg, C., Martin, A.: On the bisection cut polytope. Darmstadt University of Technology (preprint, 2006)Google Scholar
  17. 17.
    Aron, I.D., Hooker, J.N., Yunes, T.H.: SIMPL: a system for integrating optimization techniques. In: Régin, J.-C., Rueher, M. (eds.) Integration of AI and OR techniques in constraint programming for combinatorial optimization problems, first international conference, CPAIOR. Lecture Notes in Computer Science, vol. 3011, pp. 21–36. Springer, Nice, France (2004)Google Scholar
  18. 18.
    Atamtürk A.: Flow pack facets of the single node fixed-charge flow polytope. Oper. Res. Lett. 29, 107–114 (2001)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Atamtürk A.: On the facets of the mixed—integer knapsack polyhedron. Math. Programm. 98, 145–175 (2003)MATHCrossRefGoogle Scholar
  20. 20.
    Atamtürk A., Rajan D.: On splittable and unsplittable capacitated network design arc-set polyhedra. Math. Programm. 92, 315–333 (2002)MATHCrossRefGoogle Scholar
  21. 21.
    Balas E.: Facets of the knapsack polytope. Math. Programm. 8, 146–164 (1975)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Balas E., Ceria S., Cornuéjols G., Natraj N.: Gomory cuts revisited. Oper. Res. h Lett. 19, 1–9 (1996)MATHCrossRefGoogle Scholar
  23. 23.
    Balas E., Zemel E.: Facets of the knapsack polytope from minimal covers. SIAM J. Appl. Math. 34, 119–148 (1978)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Beale E.M.L.: Branch and bound methods for mathematical programming systems. In: Hammer, P.L., Johnson, E.L., Korte, B.H.(eds) Discrete Optimization II, pp. 201–219. North Holland Publishing Co., Amsterdam (1979)Google Scholar
  25. 25.
    Bénichou M., Gauthier J.M., Girodet P., Hentges G., Ribière G., Vincent O.: Experiments in mixed-integer linear programming. Math. Programm. 1, 76–94 (1971)MATHCrossRefGoogle Scholar
  26. 26.
    Berthold, T.: Primal heuristics for mixed integer programs. Master’s Thesis, Technische Universität BerlinGoogle Scholar
  27. 27.
    Berthold, T., Heinz, S., Pfetsch, M.E.: Solving pseudo-Boolean problems with SCIP. Report 07–10, Zuse Institute Berlin (2008)Google Scholar
  28. 28.
    Biere, A., Clarke, E.M., Raimi, R., Zhu, Y.: Verifying safety properties of a Power PC microprocessor using symbolic model checking without BDDs. In: Computer-aided verification. Lecture Notes in Computer Science, vol. 1633, pp. 60–71. Springer, Heidelberg (1999)Google Scholar
  29. 29.
    Bilgen, E.: Personalkostenminimierung bei der Einsatzplanung von parallelen identischen Bearbeitungszentren in der Motorradproduktion. Master’s Thesis, Technische Universität Chemnitz (2007)Google Scholar
  30. 30.
    Bjesse, P., Leonard, T., Mokkedem, A.: Finding bugs in an Alpha microprocessor using satisfiability solvers. In: Computer-aided verification. Lecture Notes in Computer Science, vol. 2102, pp. 454–464. Springer, Heidelberg (2001)Google Scholar
  31. 31.
    Bley, A., Kupzog, F., Zymolka, A.: Auslegung heterogener Kommunikationsnetze nach performance und Wirtschaftlichkeit. In: Proceedings of 11th Kasseler Symposium Energie-Systemtechnik: Energie und Kommunikation, pp. 84–97, Kassel, November (2006)Google Scholar
  32. 32.
    Bockmayr A., Kasper T.: Branch-and-infer: a unifying framework for integer and finite domain constraint programming. INFORMS J. Comput. 10(3), 287–300 (1998)MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Bockmayr, A., Pisaruk, N.: Solving assembly line balancing problems by combining IP and CP. In: Sixth Annual Workshop of the ERCIM Working Group on Constraints, June (2001)Google Scholar
  34. 34.
    Brinkmann, R.: Preprocessing for Property Checking of Sequential Circuit on the Register Transfer Level. Ph.D. Thesis, University of Kaiserslautern, Kaiserslautern, Germany (2003)Google Scholar
  35. 35.
    Brinkmann, R., Drechsler, R.: RTL-datapath verification using integer linear programming. In: Proceedings of the IEEE VLSI Design Conference, pp. 741–746 (2002)Google Scholar
  36. 36.
    Bryant R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Trans. Comput. C-35(8), 677–691 (1986)CrossRefGoogle Scholar
  37. 37.
    Ceselli, A., Gatto, M., Lübbecke, M., Nunkesser, M., Schilling, H.: Optmizing the cargo express service of swiss federal railways. Transport. Sci. (to appear)Google Scholar
  38. 38.
    COIN-OR. Computational Infrastructure for Operations Research. http://www.coin-or.org
  39. 39.
    Crowder H., Johnson E.L., Padberg M.W.: Solving large scale zero-one linear programming problems. Oper. Res. 31, 803–834 (1983)MATHCrossRefGoogle Scholar
  40. 40.
    Danna E., Rothberg E., Le Pape C.: Exploring relaxation induced neighborhoods to improve MIP solutions. Math. Programm. 102(1), 71–90 (2005)MATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Dantzig, G.B.: Maximization of a linear function of variables subject to linear inequalities. In: Koopmans, T. (ed.) Activity Analysis of Production and Allocation, pp. 339–347. Wiley, New York (1951)Google Scholar
  42. 42.
    Dantzig G.B.: Linear Programming and Extensions. Princeton University Press, Princeton (1963)MATHGoogle Scholar
  43. 43.
    Dash Optimization. Xpress-MP. http://www.dashoptimization.com
  44. 44.
    Dix, A.: Das Statische Linienplanungsproblem. Master’s Thesis, Technische Universität Berlin (2007)Google Scholar
  45. 45.
    Dolan E., Moré J.: Benchmarking optimization software with performance profiles. Math. Programm. 91, 201–213 (2002)MATHCrossRefGoogle Scholar
  46. 46.
    Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) Proceedings of SAT 2003, pp. 502–518. Springer, Heidelberg (2003)Google Scholar
  47. 47.
    Fallah F., Devadas S., Keutzer K.: Functional vector generation for HDL models using linear programming and boolean satisfiability. IEEE Trans. CAD CAD-20(8), 994–1002 (2001)Google Scholar
  48. 48.
    Fischetti M., Lodi A.: Local branching. Math. Programm. 98(1–3), 23–47 (2003)MATHCrossRefMathSciNetGoogle Scholar
  49. 49.
    Forrest, J.J.H.: COIN branch and cut. COIN-OR, http://www.coin-or.org
  50. 50.
    Forrest, J.J.H., de la Nuez, D., Lougee-Heimer, R.: CLP user guide. COIN-OR,http://www.coin-or.org/Clp/userguide
  51. 51.
    Fügenschuh, A., Martin, A.: Computational integer programming and cutting planes. In: Aardal, K., Nemhauser, G.L., Weismantel, R. (eds.) Discrete Optimization. Handbooks in Operations Research and Management Science, Chap. 2, vol. 12, pp. 69–122. Elsevier, Amsterdam (2005)Google Scholar
  52. 52.
    Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: DPLL(T): fast decision procedures. In: Proceedings of the International Conference on Computer Aided Verification (CAV-04). pp. 26–37 (2004)Google Scholar
  53. 53.
    Gauthier J.M., Ribière G.: Experiments in mixed-integer linear programming using pseudocosts. Math. Programm. 12(1), 26–47 (1977)MATHCrossRefGoogle Scholar
  54. 54.
    Glover F., Laguna M.: Tabu Search. Kluwer, Boston (1997)MATHGoogle Scholar
  55. 55.
    Gomory, R.E.: Solving linear programming problems in integers. In: Bellman, R., Hall, J.M. (eds.) Combinatorial Analysis Symposia in Applied Mathematics X, pp. 211–215. American Mathematical Society, Providence (1960)Google Scholar
  56. 56.
    Gomory, R.E.: An algorithm for integer solutions to linear programming. In: Graves, R.L., Wolfe, P. (eds.) Recent Advances in Mathematical Programming, pp. 269–302. McGraw-Hill, New York (1963)Google Scholar
  57. 57.
    Gottlieb, J., Paulmann, L.: Genetic algorithms for the fixed charge transportation problem. In: Proceedings of the 1998 IEEE International Conference on Evolutionary Computation, pp. 330–335. IEEE Press, New York (1998)Google Scholar
  58. 58.
    Hooker J.N.: Planning and scheduling by logic-based Benders decomposition. Oper. Res. 55(3), 588–602 (2007)CrossRefMathSciNetGoogle Scholar
  59. 59.
  60. 60.
    Jain V., Grossmann I.E.: Algorithms for hybrid MILP/CP models for a class of optimization problems. INFORMS J. Comput. 13(4), 258–276 (2001)CrossRefMathSciNetGoogle Scholar
  61. 61.
    Jerraya, A.A., Wolf, W.: Multiprocessor Systems-on-Chips. The Morgan Kaufmann Series in Systems on Silicon. Elsevier/Morgan Kaufman, Boston/San Francisco (2004)Google Scholar
  62. 62.
    Johnson E.L., Padberg M.W.: Degree-two inequalities, clique facets, and biperfect graphs. Ann. Discret. Math. 16, 169–187 (1982)MATHMathSciNetGoogle Scholar
  63. 63.
    Joswig M., Pfetsch M.E.: Computing optimal Morse matchings. SIAM J. Discret. Math. 20(1), 11–25 (2006)MATHCrossRefMathSciNetGoogle Scholar
  64. 64.
    Kaibel, V., Peinhardt, M., Pfetsch, M.E.: Orbitopal fixing. In: Fischetti, M., Williamson, D. (eds.) Proceedings of the 12th Integer Programming and Combinatorial Optimization conference (IPCO). LNCS, vol. 4513, pp. 74–88. Springer, Heidelberg (2007)Google Scholar
  65. 65.
    Koch, T.: Rapid mathematical programming or how to solve sudoku puzzles in a few seconds. In: Haasis, H.-D., Kopfer, H., Schönberger, J. (eds.) Operations Research Proceedings 2005, pp. 21–26 (2006)Google Scholar
  66. 66.
    Kutschka, M.: Algorithmen zur Separierung von \({\{0,\frac{1}{2}\}}\) -Schnitten. Master’s Thesis, Technische Universität Berlin (2007)Google Scholar
  67. 67.
    Land A., Powell S.: Computer codes for problems of integer programming. Ann. Discret. Math. 5, 221–269 (1979)MATHCrossRefMathSciNetGoogle Scholar
  68. 68.
    Letchford A.N., Lodi A.: Strengthening Chvátal–Gomory cuts and Gomory fractional cuts. Oper. Res. Lett. 30(2), 74–82 (2002)MATHCrossRefMathSciNetGoogle Scholar
  69. 69.
    Li, C.M., Anbulagan: Heuristics based on unit propagation for satisfiability problems. In: Proceedings of 15th International Joint Conference on Artificial Interlligence (IJCAI 1997), pp. 366–371. Morgan Kaufmann, Japan (1997)Google Scholar
  70. 70.
    Li, C.M., Anbulagan: Look-ahead versus look-back for satisfiability problems. In: Proceedings of third international conference on Principles and Practice of Constraint Programming (CP 1997), pp. 342–356. Springer, Autriche (1997)Google Scholar
  71. 71.
    Linderoth, J.T., Ralphs, T.K.: Noncommercial software for mixed-integer linear programming. In: Karlof, J. (ed.) Integer Programming: Theory and Practice, Operations Research Series, pp. 253–303. CRC Press, Boca Raton (2005)Google Scholar
  72. 72.
    Linderoth J.T., Savelsbergh M.W.P.: A computational study of search strategies for mixed integer programming. INFORMS J. Comput. 11, 173–187 (1999)MATHCrossRefMathSciNetGoogle Scholar
  73. 73.
    Madre, J.C., Billon, J.P.: Proving circuit correctness using formal comparison between expected and extracted behavior. In: Proceedings of the 25th Design Automation Conference, pp. 205–210 (1988)Google Scholar
  74. 74.
    Manquinho, V., Roussel, O.: Pseudo Boolean evaluation (2007).http://www.cril.univ-artois.fr/PB07/
  75. 75.
    Marchand, H.: A polyhedral study of the mixed knapsack set and its use to solve mixed integer programs. Ph.D. Thesis, Faculté des Sciences Appliquées, Université catholique de Louvain (1998)Google Scholar
  76. 76.
    Marchand H., Wolsey L.A.: Aggregation and mixed integer rounding to solve MIPs. Oper. Res. 49(3), 363–371 (2001)CrossRefMathSciNetGoogle Scholar
  77. 77.
    Markowitz H.M., Manne A.S.: On the solution of discrete programming problems. Econometrica 25, 84–110 (1957)MATHCrossRefMathSciNetGoogle Scholar
  78. 78.
    Marques-Silva J.P., Sakallah K.A.: GRASP: a search algorithm for propositional satisfiability. IEEE Trans. Comput. 48, 506–521 (1999)CrossRefMathSciNetGoogle Scholar
  79. 79.
    Martin, A.: Integer programs with block structure. Habilitations-Schrift, Technische Universität Berlin (1998).http://www.zib.de/Publications/abstracts/SC-99-03/
  80. 80.
    Martin, A., Weismantel, R.: The intersection of knapsack polyhedra and extensions. In: Bixby, R.E., Boyd, E., Ríos-Mercado, R.Z. (eds.) Integer programming and combinatorial optimization. Proceedings of the 6th IPCO Conference, pp. 243–256 (1998).http://www.zib.de/Publications/abstracts/SC-97-61/
  81. 81.
    Mitra G.: Investigations of some branch and bound strategies for the solution of mixed integer linear programs. Math. Programm. 4, 155–170 (1973)MATHCrossRefGoogle Scholar
  82. 82.
    Mittelmann, H.: Decision tree for optimization software: Benchmarks for optimization software.http://plato.asu.edu/bench.html
  83. 83.
    Mosek. Mosek Optimization tools.http://www.mosek.com
  84. 84.
    Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an efficient SAT solver. In: Proceedings of the Design Automation Conference, July (2001)Google Scholar
  85. 85.
    Nemhauser G.L., Trick M.A.: Scheduling a major college basketball conference. Oper. Res. 46(1), 1–8 (1998)CrossRefGoogle Scholar
  86. 86.
    Nunkesser, M.: Algorithm design and analysis of problems in manufacturing, logistic, and telecommunications: An algorithmic jam session. Ph.D. Thesis, Eidgenössische Technische Hochschule ETH Zürich (2006)Google Scholar
  87. 87.
    Orlowski, S., Koster, A.M.C.A., Raack, C., Wessäly, R.: Two-layer network design by branch- and-cut featuring MIP-based heuristics. In: Proceedings of the Third International Network Optimization Conference (INOC 2007). Spa, Belgium (2007)Google Scholar
  88. 88.
    Padberg M.W., Roy T.J., Wolsey L.A.: Valid inequalities for fixed charge problems. Oper. Res. 33(4), 842–861 (1985)MATHCrossRefMathSciNetGoogle Scholar
  89. 89.
    Parthasarathy, G., Iyer, M.K., Cheng, K.T., Wang, L.C.: An efficient finite-domain constraint solver for RTL circuits. In: Proceedings of the International Design Automation Conference (DAC-04) June (2004)Google Scholar
  90. 90.
    Pfetsch, M.E.: Branch-and-cut for the maximum feasible subsystem problem. Report 05-46, ZIB (2005)Google Scholar
  91. 91.
    Ryan, D.M., Foster, B.A.: An integer programming approach to scheduling. In: Wren, A. (ed.) Computer Scheduling of Public Transport Urban Passenger Vehicle and Crew Scheduling, pp. 269–280. North Holland, Amsterdam (1981)Google Scholar
  92. 92.
    Ryan, L.: Efficient algorithms for clause-learning SAT solvers. Master’s Thesis, Simon Fraser UniversityGoogle Scholar
  93. 93.
    Savelsbergh M.W.P.: Preprocessing and probing techniques for mixed integer programming problems. ORSA J. Comput. 6, 445–454 (1994)MATHMathSciNetGoogle Scholar
  94. 94.
    Thienel, S.: ABACUS—A Branch-and-Cut System. Ph.D. Thesis, Institut für Informatik, Universität zu Köln (1995)Google Scholar
  95. 95.
    Timpe C.: Solving planning and scheduling problems with combined integer and constraint programming. OR Spectr. 24(4), 431–448 (2002)MATHCrossRefGoogle Scholar
  96. 96.
    VALSE-XT: Eine integrierte Lösung für die SoC-Verifikation (2005).http://www.edacentrum.de/ekompass/projektflyer/pf-valse-xt.pdf
  97. 97.
    Roy T.J., Wolsey L.A.: Valid inequalities for mixed 0-1 programs. Discret. Appl. Math. 14(2), 199–213 (1986)MATHCrossRefGoogle Scholar
  98. 98.
    Wolsey L.A.: Valid inequalities for 0-1 knapsacks and MIPs with generalized upper bound constraints. Discret. Appl. Math. 29, 251–261 (1990)MATHCrossRefMathSciNetGoogle Scholar
  99. 99.
    Wolter, K.: Implementation of cutting plane separators for mixed integer programs. Master’s Thesis, Technische Universität Berlin (2006)Google Scholar
  100. 100.
    Wunderling, R.: Paralleler und objektorientierter Simplex-Algorithmus. Ph.D. Thesis, Technische Universität Berlin (1996).http://www.zib.de/Publications/abstracts/TR-96-09/
  101. 101.
    Zeng, Z., Kalla, P., Ciesielski, M.: LPSAT: a unified approach to RTL satisfiability. In: Proceedings of Conference on Design, Automation and Test in Europe (DATE-01) Munich, March (2001)Google Scholar
  102. 102.
    Zuse Institute Berlin. SCIP: solving constraint integer programs.http://scip.zib.de

Copyright information

© Springer and Mathematical Programming Society 2009

Authors and Affiliations

  1. 1.Zuse Institute BerlinBerlinGermany

Personalised recommendations