Advertisement

Evolving Systems

, Volume 10, Issue 2, pp 205–220 | Cite as

A novel synergistic fibroblast optimization based Kalman estimation model for forecasting time-series data

  • T. T. DhivyaprabhaEmail author
  • P. Subashini
  • M. Krishnaveni
  • N. Santhi
  • Ramesh Sivanpillai
  • G. Jayashree
Original Paper
  • 87 Downloads

Abstract

Evolution of a new computational model for estimating the time-varying data is a highly empirical task in scientific computing theory. Using various evolutionary computation techniques, the identified parameters and functions of the estimation model are optimized to improve the performance of the execution process. The objective of this paper is to introduce a novel Synergistic Fibroblast Optimization (SFO) algorithm in Kalman filter, to develop an optimal estimation model, for forecasting the future state variables of time series data. The proposed model is evaluated using the water samples collected from Ukkadam Periyakulam Lake, Coimbatore, India, where water quality forecasting is done. Fisher score method is applied to choose optimal features subset from the specified high dimensional dataset. Standard performance metrics such as root mean square error (RMSE), mean absolute error (MAE) and regression equation of Sum of Squared Error (SSE) are measured to evaluate the performance of the estimation model, and it is also compared with the actual measurements. Experimental results illustrate that SFO based estimation model produces better promising results than conventional estimating methods.

Keywords

Kalman filter Estimation model Synergistic fibroblast optimization (SFO) Time-varying data Water quality parameters 

References

  1. Al-hnaity B, Abbod M (2016) Predicting financial time series data using hybrid model. In: Bi Y et al (eds), Springer intelligent systems and applications, 19–41,  https://doi.org/10.1007/978-3-319-33386-1_2
  2. Antonov S, Fehn A, Kugi A (2011) Unscented kalman filter for vehicle state estimation. Veh Syst Dyn 49:1497–1520.  https://doi.org/10.1080/00423114.2010.527994 CrossRefGoogle Scholar
  3. Ashouria A, Fazlollahib S, Benzc MJ, Marechal F (2015) Particle swarm optimization and kalman filtering for demand prediction of commercial buildings. In: Proceedings of ECOS 2015—the 28th international conference on efficiency, cost, optimization, simulation and environmental impact of energy systems, France, pp. 31–40Google Scholar
  4. Balabanian J-P, Viola I, Moller T, Groller E (2008) Temporal styles for time-varying volume data. In: Proceedings of 3DPVT’08—the fourth international symposium on 3D data processing, visualization and transmission, Atlanta, GA, USA, 1–8Google Scholar
  5. Cervantes A, Galvan I, Isasi P (2005) A comparison between the Pittsburgh and Michigan approaches for the binary PSO algorithm. IEEE Xplore, 290–297Google Scholar
  6. Chai T, Draxler R (2014) Root mean square error (rmse) or mean absolute error (mae)?—arguments against avoiding rmse in the literature. Copernic Publ Behalf Eur Geosci Union Vol 7:1247–1250.  https://doi.org/10.5194/gmd-7-1247-2014 Google Scholar
  7. Citrolo AG, Giancarlo M (2013) A hybrid montecarlo ant colony optimization approach for protein structure prediction in the hp model. Artif Life Evolut Comput EPTCS 130:61–69.  https://doi.org/10.4204/EPTCS.130.9 Google Scholar
  8. CPCB (2008) Tolerance limit for surface water MINARS/27. Central Pollution Control Board, New Delhi, India. Retrieved from http://cpcb.nic.in/openpdffile.php?id=UmVwb3J0RmlsZXMvTmV3SXRlbV8xMTZfR3VpZGVsaW5lc29mIHdhdGVycXVhbGl0eW1vbml0b3JpbmdfMzEuMDcuMDgucGRm Google Scholar
  9. Daniel Larose DT (2006) Data mining methods and models, 2nd edn. Wiley, Hoboken, NJ, pp 1–322CrossRefzbMATHGoogle Scholar
  10. Danjuma KJ (2015) Performance evaluation of machine learning algorithms in post-operative life expectancy in the lung cancer patients. Int J Comput Sci Issues 12:1–11Google Scholar
  11. Daraigan SG, Wahdain AS, Ba-Mosa AS, Obid MH (2011) Linear correlation analysis study of drinking water quality data for al-mukalla city, hadhramout, yemen. Int J Environ Sci 1:1699–1708Google Scholar
  12. Dhivyaprabha TT, Subashini P, Krishnaveni M (2016) Computational intelligence based machine learning methods for rule-based reasoning in computer vision applications. In: IEEE symposium series on computational intelligence (SSCI), Athens, Greece, pp. 311–318Google Scholar
  13. Esfandeh S, Sedighizadeh M (2011) Meteorological data study and forecasting using particle swarm optimization algorithm. World Acad Sci Eng Technol Int J Environ Chem Ecol Geol Geophys Eng 5:108–110Google Scholar
  14. Fan L, Wehbe Y (2013) Extended kalman filtering based real-time dynamic state and parameter estimation using PMU data. Electr Power Syst Res 103:168–177CrossRefGoogle Scholar
  15. Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3:1157–1182zbMATHGoogle Scholar
  16. Heydari M,, Olyaie E, Mohebzadeh H, Kisi Ö (2013) Development of a neural network technique for prediction of water quality parameters in the delaware river, pennsylvania. Middle East J Sci Res 13:1367–1376.  https://doi.org/10.5829/idosi.mejsr.2013.13.10.1238 Google Scholar
  17. Hoang N-D, Pham A-D, Cao MT (2014) A novel time series prediction approach based on a hybridization of least squares support vector regression and swarm intelligence. Appl Comput Intell Soft Comput  https://doi.org/10.1155/2014/754809 Google Scholar
  18. ISI (1991) Tolerance limit for inland surface water subject to various purpose. BIS (IS:10500:1991), Indian Standards Institute, New Delhi, India. Retrieved from http://www.indiawaterportal.org/sites/indiawaterportal.org/files/tolerance_and_classification_water_use_central_water_commission_2010.pdf
  19. Jang Y, Ebert DS, Kelly G (2012) Time-varying data visualization using functional representations. IEEE Trans Visual Comput Graph 18:421–433.  https://doi.org/10.1109/TVCG.2011.54 CrossRefGoogle Scholar
  20. Kader HA, Salam MA (2012) Evaluation of differential evolution and particle swarm optimization algorithms at training of neural network for stock prediction. Int Arab J Technol 2:145–151Google Scholar
  21. Krishnaveni M, Subashini P, Dhivyaprabha TT (2016) A new optimization approach—SFO for denoising digital images. In: IEEE international conference on computational systems & information technology for sustainable solution, pp. 34–39.  https://doi.org/10.1109/CSITSS.2016.7779436
  22. Levy AS, Eckardt KU, Tsukamoto Y, Levin A, Coresh J, Rossert J, Zeeuw DD, Hostetter TH, Lameire N, Eknoyan G (2005) Definition and classification of chronic kidney disease: a position statement from kidney disease: improving global outcomes (KDIGO). Kidney Int 67:2089–2100CrossRefGoogle Scholar
  23. Li JY, Kokkinaki A, Ghorbanidehno H, Darve EF, Kitanidis PK (2015) The compressed state kalman filter for nonlinear state estimation: application to large-scale reservoir monitoring. Water Resour Resour 51:9942–9963.  https://doi.org/10.1002/2015WR017203 CrossRefGoogle Scholar
  24. Louka P, Galanis G, Siebert N, Kariniotakis G, Katsafados P, Kallos G, Pytharoulis I (2008) Improvements in wind speed forecasts for wind power prediction purposes using kalman filtering. Elsevier J Wind Eng Ind Aerodyn 96:2348–2362.  https://doi.org/10.1016/j.jweia.2008.03.013 CrossRefGoogle Scholar
  25. Mankar OS, Vadirajacharya K (2015) Kalman filter analysis in dynamic state of power system. Int Res J Eng Technol 2:1170–1173Google Scholar
  26. Moradkhani H, Sorooshian S,Gupta HV, Houser PR (2005) Dual state–parameter estimation of hydrological models using ensemble kalman filter. Adv Water Resour 28:135–147CrossRefGoogle Scholar
  27. Mustaffa Z, Yusof Y (2014) LSSVM parameters tuning with enhanced artificial bee colony. Int Arab J Inf Technol 11:236–241Google Scholar
  28. Oreski S (2014) Hybrid techniques of combinatorial optimization with application to retail credit risk assessment. Artif Intell Appl 1:21–43Google Scholar
  29. Phan AT, Wira P, Hermann G (2017) A dedicated state space for power system modeling and frequency and unbalance estimation. Springer Evol Syst.  https://doi.org/10.1007/s12530-017-9177-9 Google Scholar
  30. Qi J, Ahmad Taha F, Wang J (2017 Comparing Kalman filters and observers for dynamic state estimation with model uncertainty and malicious cyber attacks. arXiv:1605.01030v2 [cs.SY], pp 1–9
  31. Singh B, Kushwaha N, Vyas OP (2014) A feature subset selection technique for high dimensional data using symmetric uncertainty. J Data Anal Inf Process 2:95–105.  https://doi.org/10.4236/jdaip.2014.24012 Google Scholar
  32. Subashini P, Dhivyaprabha TT, Krishnaveni M (2017) Synergistic fibroblast optimization. In: Dash S, Vijayakumar K, Panigrahi B, Das S (eds) Artificial intelligence and evolutionary computations in engineering systems. advances in intelligent systems and computing, vol 517. Springer, Singapore, pp 285–294. https://doi.org/10.1109/TVCG.2011.5410.1007/978-981-10-3174-8_25Google Scholar
  33. Wahono RS, Suryana N (2013) Combining particle swarm optimization based feature selection and bagging technique for software defect prediction. Int J Softw Eng Appl 7:153–166.  https://doi.org/10.14257/ijseia.2013.7.5.16 Google Scholar
  34. Wang Y, Papageorgiou M (2005) Real-time freeway traffic state estimation based on extended kalman filter: a general approach. Transp Res Part B 39:141–167CrossRefGoogle Scholar
  35. Wang C, Yu H, Ma KL (2008) Importance-drive time-varying data visualization. IEEE Trans Visual Comput Graph 14:1547–1554.  https://doi.org/10.1109/TVCG.2008.140 CrossRefGoogle Scholar
  36. Wang Y, Tian Y, Wang X, Chen Z, Tan Y (2014) Kalman-filter-based state estimation for system information exchange in a multi-bus islanded microgrid. In: Proceedings of the 7th IET international conference on power electronics, machines and drives (PEMD 2014), pp. 1–6. Institution of Engineering and Technology. IET Conference Publication Series,  https://doi.org/10.1049/cp.2014.0280
  37. Yu Z, Huai R, Xiao L (2015) State-of-charge estimation for lithium-ion batteries using a kalman filter based on local linearization. Energies 8:7854–7873.  https://doi.org/10.3390/en8087854 CrossRefGoogle Scholar
  38. Zhang J, Welch G, Ramakrishnan N, Rahman S (2015) Kalman filters for dynamic and secure smart grid state estimation. Intell Ind Syst 1:29–36.  https://doi.org/10.1007/s40903-015-0009-6 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer ScienceAvinashilingam Institute for Home Science and Higher Education for WomenCoimbatoreIndia
  2. 2.Department of BioinformaticsAvinashilingam Institute for Home Science and Higher Education for WomenCoimbatoreIndia
  3. 3.Department of BotanyUniversity of WyomingLaramieUSA
  4. 4.Department of Information TechnologyKumaraguru College of TechnologyCoimbatoreIndia

Personalised recommendations