Evolving Systems

, Volume 5, Issue 1, pp 3–10 | Cite as

A robust fuzzy adaptive law for evolving control systems

  • Sašo BlažičEmail author
  • Igor Škrjanc
  • Drago Matko
Original Paper


In this paper an adaptive law with leakage is presented. This law can be used in the consequent part of Takagi–Sugeno-based control. The approach enables easy implementation in the control systems with evolving antecedent part. This combination results in a high-performance and robust control of nonlinear and slowly varying systems. It is shown in the paper that the proposed adaptive law is a natural way to cope with the parasitic dynamics. The boundedness of estimated parameters, the tracking error and all the signals in the system is guaranteed if the leakage parameter σ′ is large enough. This means that the proposed adaptive law ensures the global stability of the system. A simulation example is given that illustrates the proposed approach.


Adaptive law Takagi–Sugeno model Model-reference control Evolving systems 


  1. Angelov P, Filev DP (2004) An approach to online identification of Takagi–Sugeno fuzzy models. IEEE Syst Man Cybern 34(1):484–498Google Scholar
  2. Angelov P, Buswell R, Wright JA, Loveday D (2001) Evolving rule-based control. In: EUNITE Symposium, Tenerife (Spain), pp 36–41***Google Scholar
  3. Angelov P, Sadeghi-Tehran P, Ramezani R (2011) An approach to automatic real-time novelty detection, object identification, and tracking in video streams based on recursive density estimation and evolving Takagi–Sugeno fuzzy systems. Int J Intell Syst 26(3):189–205CrossRefzbMATHGoogle Scholar
  4. Blažič S, Škrjanc I, Matko D (2003) Globally stable direct fuzzy model reference adaptive control. Fuzzy Sets Syst 139(1):3–33CrossRefzbMATHGoogle Scholar
  5. Blažič S, Škrjanc I, Matko D (2010) Adaptive law with a new leakage term. IET Control Theory Appl 4(9):1533–1542CrossRefMathSciNetGoogle Scholar
  6. Blažič S, Škrjanc I, Matko D (2012) A new fuzzy adaptive law with leakage. In: 2012 IEEE conference on evolving and adaptive intelligent systems (EAIS), pp 47–50Google Scholar
  7. Cara AB, Lendek Z, Babuska R, Pomares H, Rojas I (2010) Online self-organizing adaptive fuzzy controller: application to a nonlinear servo system. In: IEEE international conference on fuzzy systems (FUZZ), pp 1–8. doi: 10.1109/FUZZY.2010.5584027
  8. Galichet S, Foulloy L (2003) Integrating expert knowledge into industrial control structures. Comput Indus 52(3):235–251CrossRefGoogle Scholar
  9. Ge S, Wang J (2002) Robust adaptive neural control for a class of perturbed strict feedback nonlinear systems. IEEE Trans Neural Netw 13(6):1409–1419CrossRefGoogle Scholar
  10. Ioannou PA, Sun J (1996) Robust adaptive control. Prentice-Hall, Upper SaddleGoogle Scholar
  11. Johanyák ZC, Papp O (2012) A hybrid algorithm for parameter tuning in fuzzy model identification. Acta Polytechnica Hungarica 9(6):153–165Google Scholar
  12. Koo KM (2001) Stable adaptive fuzzy controller with time varying dead-zone. Fuzzy Sets Syst 121:161–168CrossRefzbMATHMathSciNetGoogle Scholar
  13. Krstić M, Kanellakopoulos I, Kokotović P (1995) Nonlinear and Adaptive Control Design. John Wiley and Sons, New YorkGoogle Scholar
  14. Layne JR, Passino KM (1993) Fuzzy model reference learning control for cargo ship steering. IEEE Control Syst Mag 13:23–34CrossRefGoogle Scholar
  15. Pomares H, Rojas I, Gonzlez J, Rojas F, Damas M, Fernndez FJ (2002) A two-stage approach to self-learning direct fuzzy controllers. Int J Approx Reason 29(3):267–289CrossRefzbMATHGoogle Scholar
  16. Precup RE, Hellendoorn H (2011) A survey on industrial applications of fuzzy control. Comput Indus 62(3):213–226CrossRefGoogle Scholar
  17. Precup RE, Preitl S, Faur G (2003) Pi predictive fuzzy controllers for electrical drive speed control: methods and software for stable development. Comput Indus 52(3):253–270CrossRefGoogle Scholar
  18. Precup RE, David RC, Petriu EM, Preitl S, Rădac MB (2012) Novel adaptive gravitational search algorithm for fuzzy controlled servo systems. IEEE Trans Indus Inform 8(4):791–800CrossRefGoogle Scholar
  19. Procyk TJ, Mamdani EH (1979) A linguistic self-organizing process controller. Automatica 15:15–30CrossRefzbMATHGoogle Scholar
  20. Rojas I, Pomares H, Gonzalez J, Herrera L, Guillen A, Rojas F, Valenzuela O (2006) Adaptive fuzzy controller: application to the control of the temperature of a dynamic room in real time. Fuzzy Sets Syst 157(16):2241–2258. doi: 10.1016/j.fss.2006.03.006 Google Scholar
  21. Sadeghi-Tehran P, Cara AB, Angelov P, Pomares H, Rojas I, Prieto A (2012) Self-evolving parameter-free rule-based controller. In: IEEE Proceedings of the 2012 World Congress on Computational Intelligence, WCCI-2012, IEEE, pp 754–761Google Scholar
  22. Tang Y, Zhang N, Li Y (1999) Stable fuzzy adaptive control for a class of nonlinear systems. Fuzzy Sets Syst 104:279–288CrossRefzbMATHMathSciNetGoogle Scholar
  23. Tong S, Li Y (2012) Adaptive fuzzy output feedback tracking backstepping control of strict-feedback nonlinear systems with unknown dead zones. IEEE Trans Fuzzy Syst 20(1):168–180CrossRefGoogle Scholar
  24. Tong S, Wang T, Tang JT (2000) Fuzzy adaptive output tracking control of nonlinear systems. Fuzzy Sets Syst 111:169–182CrossRefzbMATHMathSciNetGoogle Scholar
  25. Vaščák J (2012) Adaptation of fuzzy cognitive maps by migration algorithms. Kybernetes 41(3/4):429–443Google Scholar
  26. Wang LX, Mendel JM (1992) Fuzzy basis functions, universal approximation, and orthogonal least-squares learning. IEEE Trans Neural Netw 3:807–881CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.University of Ljubljana, Faculty of Electrical EngineeringLjubljanaSlovenia

Personalised recommendations