Advertisement

Evolving Systems

, Volume 2, Issue 3, pp 145–163 | Cite as

Neutrality in evolutionary algorithms… What do we know?

  • Edgar Galván-López
  • Riccardo Poli
  • Ahmed Kattan
  • Michael O’Neill
  • Anthony Brabazon
Review

Abstract

Over the last years, the effects of neutrality have attracted the attention of many researchers in the Evolutionary Algorithms (EAs) community. A mutation from one gene to another is considered as neutral if this modification does not affect the phenotype. This article provides a general overview on the work carried out on neutrality in EAs. Using as a framework the origin of neutrality and its study in different paradigms of EAs (e.g., Genetic Algorithms, Genetic Programming), we discuss the most significant works and findings on this topic. This work points towards open issues, which we belive the community needs to address.

Keywords

Neutrality Phenotypic mutation rates Problem hardness Genotype–phenotype mappings Evolutionary algorithms 

Notes

Acknowledgments

We would like to thank the editor, associate editor and reviewers for their fair and useful comments and ideas. The paper has been considerable strengthened thanks to their feedback. This research is based upon works supported by Science Foundation Ireland under Grant No. 08/IN.1/I1868.

References

  1. Bäck T, Fogel DB, Michalewicz Z (eds) (1999) Evolutionary computation 1: basic algorithms and operators. IOP Publishing Ltd., BristolGoogle Scholar
  2. Banzhaf W (1994) Genotype–phenotype-mapping and neutral variation: a case study in genetic programming. In: Davidor Y, Schwefel H-P, Manner R (eds) PPSN III: proceedings of the 3rd international conference on parallel problem solving from nature. Springer, Jerusalem, Israel, pp 322–332Google Scholar
  3. Banzhaf W, Leier A (2006) Evolution on neutral networks in genetic programming. In: Yu T, Riolo R, Worzel B (eds) Genetic programming—theory and applications III. Kluwer Academic, Dordrecht, pp 207–221Google Scholar
  4. Banzhaf W, Francone FD, Keller RE, Nordin P (1998) Genetic programming: an introduction: on the automatic evolution of computer programs and its applications. Morgan Kaufmann Publishers Inc., San FranciscozbMATHGoogle Scholar
  5. Barnett L (1998) Ruggedness and neutrality—the NKp family of fitness landscapes. In: Adami C, Belew RK, Kitano H, Taylor CE (eds) Artificial life VI: Proceedings of the sixth international conference on artificial life. MIT Press, Cambridge, pp 18–27Google Scholar
  6. Barnett L (2001) Netcrawling—optimal evolutionary search with neutral networks. In: Proceedings of the 2001 Congress on evolutionary computation. IEEE Press, Los Alamitos, pp 30–37Google Scholar
  7. Beaudoin W, Verel S, Collard P, Escazut C (2006) Deceptiveness and neutrality. The ND family of fitness landscapes. In: Keijzer M, Cattolico M, Arnold D, Babovic V, Blum C, Bosman P, Butz MV, Coello Coello CA, Dasgupta D, Ficici SG, Foster J, Hernandez-Aguirre A, Hornby G, Lipson H, McMinn P, Moore J, Raidl G, Rothlauf F, Ryan C, Thierens D (eds) GECCO 2006: Proceedings of the 2006 conference on genetic and evolutionary computation, vol 1. ACM Press, Seattle, 8–12 July 2006, pp 507–514Google Scholar
  8. Beyer H (2001) The theory of evolution strategies. Springer, BerlinGoogle Scholar
  9. Chow R (2004a) Effects of phenotypic feedback and the coupling of genotypic and phenotypic spaces in genetic searches. In: Proceedings of the 2004 IEEE Congress on evolutionary computation (CEC-2004), vol 1, IEEE, Portland, pp 242–249Google Scholar
  10. Chow R (2004b) Evolving genotype to phenotype mappings with a multiple-chromosome genetic algorithm. In: Deb K, Poli R, Banzhaf W, Beyer H-G, Burke EK, Darwen PJ, Dasgupta D, Floreano D, Foster JA, Harman M, Holland O, Lanzi PL, Spector L, Tettamanzi A, Thierens D, Tyrrell AM (eds) GECCO 2004: Proceedings of the 2004 conference on genetic and evolutionary computation, volume 1 of Lecture Notes in Computer Science, Springer, Seattle, WA, USA, 26–30 June 2004, pp 1006–1017Google Scholar
  11. Clergue M, Collard P, Tomassini M, Vanneschi L (2002) Fitness distance correlation and problem difficulty for genetic programming. In: Langdon WB, Cantú-Paz E, Mathias KE, Roy R, Davis D, Poli R, Balakrishnan K, Honavar V, Rudolph G, Wegener J, Bull L, Potter MA, Schultz AC, Miller JF, Burke EK, Jonoska N (eds) Proceedings of the genetic and evolutionary computation conference, GECCO 2002, Morgan Kaufmann Publishers, New York, 9–13 July 2002, pp 724–732Google Scholar
  12. Collins M (2005) Finding needles in haystacks is harder with neutrality. In: Beyer H-G, O’Reilly U-M, Arnold DV, Banzhaf W, Blum C, Bonabeau EW, Cantu-Paz E, Dasgupta D, Deb K, Foster JA, de Jong ED, Lipson H, Llora X, Mancoridis S, Pelikan M, Raidl GR, Soule T, Tyrrell AM, Watson J-P, Zitzler E (eds) GECCO 2005: Proceedings of the 2005 conference on genetic and evolutionary computation, vol 2. ACM Press, Washington DC, USA, 25–29 June 2005, pp 1613–1618Google Scholar
  13. Corsi P (1988) The age of lamarck evolutionary theories in France. University of California Press, USAGoogle Scholar
  14. Darwin C (1859) On the origin of species by means of natural selection. John Murray, LondonGoogle Scholar
  15. Dasgupta D, McGregor DR (1992) Nonstationary function optimization using the structured genetic algorithm. In: Manner R, Manderick B (eds) PPSN II: Proceedings of the 2nd international conference on parallel problem solving from nature. Elsevier, Brussels, Belgium, pp 145–154Google Scholar
  16. Doerr B, Gnewuch M, Hebbinghaus N, Neumann F (2007) A rigorous view on neutrality. In: IEEE Congress on evolutionary computation, IEEE, pp 2591–2597Google Scholar
  17. Downing RM (2005) Evolving binary decision diagrams using implicit neutrality. In: Proceedings of congress on evolutionary computation (CEC 2005), vol 3, IEEE Press, Edinburgh, Scotland, pp 2107–2113Google Scholar
  18. Ebner M (1999) On the search space of genetic programming and its relation to nature’s search space. In: Proceedings of the 1999 Congress on evolutionary computation, 1999, CEC 99, 1999Google Scholar
  19. Ebner M, Langguth P, Albert J, Shackleton M, Shipman R (2001a) On neutral networks and evolvability. In: Proceedings of the 2001 IEEE Congress on evolutionary computation, IEEE Press, 27–30 May 2001, pp 1–8Google Scholar
  20. Ebner M, Shackleton M, Shipman R (2001b) How neutral networks influence evolvability. Complexity 7(2):19–33MathSciNetCrossRefGoogle Scholar
  21. Eiben AE, Hinterding R, Michalewicz Z (1999) Parameter control in evolutionary algorithms. IEEE Trans Evol Comput 3(2):124–141CrossRefGoogle Scholar
  22. Eiben AE, Smith JE (2003) Introduction to evolutionary computing. Springer, BerlinGoogle Scholar
  23. Finding Needles in Haystacks is not Hard with Neutrality. In: Foster JA, Lutton E, Miller JF, Ryan C, Tettamanzi A (eds) Genetic programming. Proceedings of the 5th European conference, EuroGP 2002, volume 2278 of LNCS, Springer, Kinsale, Ireland, 3–5 April 2002, pp 13–25Google Scholar
  24. Fisher RA (1922) On the dominance ratio. In: Proceedings of the royal society of Edinburgh, vol 42, pp 321–341Google Scholar
  25. Fonseca C, Correia M (2005) Developing redudant binary representations for genetic search. In: Proceedings of the 2005 IEEE Congress on evolutionary computation (CEC 2005), IEEE, Edinburgh, 2–4 September 2005, pp 372–379Google Scholar
  26. Fontana W, Schuster P (1998) Continuity in evolution: On the nature of transitions. Science 280:1431–1452CrossRefGoogle Scholar
  27. Galván-López E (2007) Effects of neutrality on evolutionary search. In: EvoPhD—second European Graduate Student Workshop on Evolutionary Computation, Valencia, Spain, 11–13 April 2007Google Scholar
  28. Galván-López E, Dignum S, Poli R (2008) The effects of constant neutrality on performance and problem hardness in GP. In: ONeill M, Vanneschi L, Gustafson S, Esparcia Alcazar AI, De Falco I, Della Cioppa A, Tarantino E (eds) EuroGP 2008—11th European conference on genetic programming, volume 4971 of LNCS, Springer, Napoli, Italy, 26–28 March 2008, pp 312–324Google Scholar
  29. Galván-López E, McDermott J, O’Neill M, Brabazon A (2010a) Defining locality in problem hardness in genetic programming. Genetic Programming and Evolvable MachinesGoogle Scholar
  30. Galván-López E, McDermott J, O’Neill M, Brabazon A (2010b) Defining locality in genetic programming to predict performance. In: 2010 IEEE World Congress on computational intelligence, IEEE Computational Intelligence Society, Barcelona, Spain, 18–23 July 2010, pp 1828–1835Google Scholar
  31. Galván-López E, McDermott J, O’Neill M, Brabazon A (2010c) Towards an understanding of locality in genetic programming. In: GECCO ’10: Proceedings of the 12th annual conference on Genetic and evolutionary computation, ACM, New York, NY, USA, pp 901–908Google Scholar
  32. Galván-López E, Poli R (2006a) An empirical investigation of how and why neutrality affects evolutionary search. In: Keijzer M, Cattolico M, Arnold D, Babovic V, Blum C, Bosman P, Butz MV, Coello Coello CA, Dasgupta D, Ficici SG, Foster J, Hernandez-Aguirre A, Hornby G, Lipson H, McMinn P, Moore J, Raidl G, Rothlauf F, Ryan C, Thierens D (eds) GECCO 2006: Proceedings of the 2006 conference on genetic and evolutionary computation. ACM Press, Seattle, WA, USA, 8–12 July 2006, pp 1149–1156Google Scholar
  33. Galván-López E, Poli R (2006b) Some steps towards understanding how neutrality affects evolutionary search. In: Runarsson TP, Beyer H.-G., Burke E, Merelo-Guervós JJ, Whitley LD, Yao X (eds) Parallel problem solving from nature (PPSN IX). 9th International Conference, volume 4193 of LNCS, Springer, Reykjavik, Iceland, 9–13 September 2006, pp 778–787Google Scholar
  34. Galván-López E, Poli R (2010) The effects of constant and bit-wise neutrality on problem hardness, fitness distance correlation and phenotypic mutation rates. IEEE Trans Evol Comput 4(1):1–15Google Scholar
  35. Geard N, Wiles J, Hallinan J, Tonkes B, Skellett B (2002) A Comparison of neutral landscapes—NK, NKp and NKq. In: Fogel DB, El-Sharkawi MA, Yao X, Greenwood G, Iba H, Marrow P, Shackleton M (eds) Proceedings of Congress on evolutionary computation (CEC 2002), vol 1, IEEE Press, pp 205–210Google Scholar
  36. Goldberg DE (1992) Construction of high-order deceptive functions using low-order Walsh coefficients. Ann Math Artif Intell 5(1):35–47zbMATHCrossRefGoogle Scholar
  37. Goldberg DE, Deb K, Horn J (1992) Massive multimodality, deception, genetic algorithms. In: Männer R, Manderick B (eds) PPSN II: Proceedings of the 2nd international conference on parallel problem solving from nature. Elsevier Science Publishers, B. V., Amsterdam, pp 37–48Google Scholar
  38. Haldane JBS (1957) The cost of natural selection. J Genet 55:511–524CrossRefGoogle Scholar
  39. Harvey I, Thompson A (1996) Through the labyrinth evolution finds a way: a silicon ridge. In: Higuchi T, Iwata M, Liu W (eds) Proceedings of the first international conference on evolvable systems: from biology to hardware, vol 1259, Springer, Berlin, pp 406–422Google Scholar
  40. Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann ArborGoogle Scholar
  41. Huynen MA (1996) Exploring phenotype space through neutral evolution. Mol Evol 43:165–169CrossRefGoogle Scholar
  42. Huynen M, Stadler P, Fontana W (1996) Smoothness Within ruggedness: the role of neutrality in adaptation. Proc Natl Acad Sci USA 93:397–401CrossRefGoogle Scholar
  43. Jones T (1995) Evolutionary algorithms, fitness landscapes and search. PhD thesis, University of New Mexico, AlbuquerqueGoogle Scholar
  44. Kargupta H, Deb K, Goldberg D (1992) Ordering genetic algorithms and deception. In Männer R, Manderick B (eds) PPSN II: Proceedings of the 2nd international conference on parallel problem solving from nature. Elsevier, Amsterdam, pp 49–58Google Scholar
  45. Katada Y, Ohkura K (2006) Estimating the degree of neutrality in fitness landscapes by the nei’s standard genetic distance—an application to evolutionary robotics. In: Yen GG, Lucas SM, Fogel G, Kendall G, Salomon R, Zhang B-T, Coello Coello CA, Runarsson TP (eds) Proceedings of the 2006 IEEE Congress on evolutionary computation, IEEE Press, Vancouver, BC, Canada, 16–21 July 2006, pp 483–490Google Scholar
  46. Katada Y, Ohkura K (2009) Analysis on topologies of fitness landscapes with both neutrality and ruggedness based on neutral networks. In: Proceedings of the 11th annual conference on genetic and evolutionary computation, ACM, GECCO ’09, New York, NY, USA, pp 1855–1856Google Scholar
  47. Katada Y, Ohkura K, Ueda K (2004) An approach to evolutionary robotics using a genetic algorithm with a variable mutation rate strategy. In: Yao X, Burke EK, Lozano JA, Smith J, Merelo Guervós JJ, Bullinaria JA, Rowe JE, Tiño P, Kabán A, Schwefel H-P (eds) PPSN, volume 3242 of Lecture Notes in Computer Science, Springer, Berlin. pp 952–961Google Scholar
  48. Kauffman SA (1993) The origins of order—organization and selection in evolution. Oxford University Press, New YorkGoogle Scholar
  49. Kimura M (1968) Evolutionary rate at the molecular level. In: Nature, vol 217, pp 624–626Google Scholar
  50. Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, CambridgeGoogle Scholar
  51. King JL, Jukes TH (1969) Non-Darwinian evolution. Science 164:788–798CrossRefGoogle Scholar
  52. Knowles JD, Watson RA (2002) On the utility of redundant encodings in mutation-based evolutionary search. In: Guervós JM, Adamidis P, Beyer H-G, F-Villacañas Martín JL, Schwefel H-P (eds) Parallel problem solving from nature— PPSN VII: 7th international conference, Springer, Granada, Spain, pp 88–98Google Scholar
  53. Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection. The MIT Press, Cambridge, MassachusettsGoogle Scholar
  54. Langdon WB, Poli R (2002) Foundations of genetic programming. Springer, BerlinGoogle Scholar
  55. Lehre PK, Haddow PC (2005) Accessibility between neutral networks in indirect genotype–phenotype mappings. In: The 2005 IEEE Congress on evolutionary computation (CEC 2005), vol 1, IEEE Press, Edinburgh, UK, pp 419–426Google Scholar
  56. Lehre PK, Haddow PC (2006) Phenotypic complexity and local variations in neutral degree. BioSystems 87(2–3):233–42CrossRefGoogle Scholar
  57. Lobo J, Miller JH, Fontana W (2004) Neutrality in technological landscapes. In: Santa Fe Working PaperGoogle Scholar
  58. Miller JF (1999) An empirical study of the efficiency of learning Boolean functions using a Cartesian genetic approach. In: Banzhaf W, Daida JM, Eiben AE, Garzon MH, Honavar V, Jakiela MJ, Smith RE (eds) Proceedings of the genetic and evolutionary computation conference GECCO’99, vol 2, Morgan Kaufmann, Orlando, Florida, 13–17 July 1999, pp 1135–1142Google Scholar
  59. Miller JF, Smith SL (2006) Redundancy and computational efficiency in cartesian genetic programming. IEEE Trans Evol Comput 10(2):167–174CrossRefGoogle Scholar
  60. Miller JF, Thomson P (2000) Cartesian genetic programming. In: Poli R, Banzhaf W, Langdon W, Miller J, Nordin P, Fogarty T (eds) Third European conference on genetic programming EuroGP 2000, volume 1802 of LNCS, Springer, Edinburgh, 15–16 April 2000, pp 121–132Google Scholar
  61. Mitchell M, Forrest S, Holland JH (1992) The royal road for genetic algorithms: fitness landscapes and GA performance. In: Varela FJ, Bourgine P (eds) Towards a practice of autonomous systems: Proceedings of the first European conference on artificial life. MIT Press, Cambridge, MA, pp 245–254Google Scholar
  62. Mitchell TM (1996) Machine learning. McGraw Hill, New YorkzbMATHGoogle Scholar
  63. Newman M, Engelhardt R (1998a) Effects of selective neutrality on the evolution of molecular species. Proc R Soc Lond 265(1403):1333–1338Google Scholar
  64. Newman MEJ, Engelhardt R (1998b) Effects of neutral selection on the evolution of molecular species. Working Papers 98-01-001, Santa Fe Institute, January 1998Google Scholar
  65. Poli R, Galván-López E (2007) On the effects of bit-wise neutrality on fitness distance correlation, phenotypic mutation rates and problem hardness. In: Stephens CR, Toussaint M, Whitley D, Stadler PF (eds) Foundations of genetic Algorithms IX, Lecture Notes in Computer Science, Springer, Mexico City, Mexico, 8–11 January 2007, pp 138–164Google Scholar
  66. Poli R, Langdon WB, McPhee NF (2008) A field guide to genetic programming. Published via and freely available at http://www.gp-field-guide.org.uk (with contributions by J. R. Koza)
  67. Poli R, Vanneschi L (2007) Fitness-proportional negative slope coefficient as a hardness measure for genetic algorithms. In: Proceedings of the 9th annual conference on Genetic and evolutionary computation, GECCO ’07, ACM, New York, NY, USA, pp 1335–1342Google Scholar
  68. Reidys C, Stadler PF, Schuster P (1997) Generic properties of combinatory maps—neutral networks of RNA secondary structures. Bull Math Biol 59:339–397zbMATHCrossRefGoogle Scholar
  69. Reidys CM, Stadler PF (2001) Neutrality in fitness landscapes. Appl Math Comput 117(2–3):321–350MathSciNetzbMATHCrossRefGoogle Scholar
  70. Ridley M (2003) Evolution. Blackwell publishing, HobokenGoogle Scholar
  71. Rothlauf F, Goldberg D (2003) Redundant representations in evolutionary algorithms. Evol Comput 11(4):381–415Google Scholar
  72. Schuster P, Fontana W, Stadler PF, Hofacker IL (1994) From sequences to shapes and back: a case study in RNA secondary structures. R Soc Lond Proc Ser B 255:279–284CrossRefGoogle Scholar
  73. Schuster P (1997) Genotypes with phenotypes: adventures in an RNA toy world. Biophys Chem 66(2):75–110Google Scholar
  74. Shackleton MA, Shipman R, Ebner M (2000) An investigation of redundant genotype–phenotype mappings and their role in evolutionary search. In: Zalzala A, Fonseca C, Kim JH, Smith A (eds) Proceedings of the international congress on evolutionary computation (CEC 2000), IEEE Press, pp 493–500Google Scholar
  75. Shipman R (1999) Genetic redundancy: Desirable or problematic for evolutionary adaptation. In: Dobnikar A, Steele NC, Pearson DW, Albrecht RF (eds) 4th international conference on artificial neural networks and genetic algorithms (ICANNGA’99), Springer, Berlin, pp 337–344Google Scholar
  76. Shipman R, Shackleton M, Ebner M, Watson R (2000) Neutral search spaces for artificial evolution: a lesson from life. In: Bedau M, Rasmussen S, McCaskill J, Packard N (eds) Artificial life: Proceedings of the seventh international conference on artificial life, MIT Press, pp 162–169Google Scholar
  77. Smith T, Husbands P, Layzell P, O’Shea M (2001a) Neutral networks and evolvability with complex genotype–phenotype mapping. In: ECAL ’01: Proceedings of the 6th European conference on advances in artificial life, Springer, London, UK, pp 272–281Google Scholar
  78. Smith T, Husbands P, Layzell P, O’Shea M (2001b) Neutral networks in an evolutionary robotics search space. In: Proceedings on evolutionary computation 2001, IEEE Press, pp 136–145Google Scholar
  79. Smith T, Husbands P, Layzell P, O’Shea M (2002) Fitness landscapes and evolvability. Evol Comput 10:1–34Google Scholar
  80. Toussaint M (2003) On the evolution of phenotypic exploration distributions. In: De Jong KA, Poli R, Rowe J (eds) Foundations of genetic algorithms 7 (FOGA 2003), Morgan Kaufmann, pp 169–182Google Scholar
  81. Toussaint M, Igel C (2002) Neutrality: a necessity for self-adaptation. In: Proceedings of the IEEE Congress on evolutionary computation (CEC 2002), pp 1354–1359Google Scholar
  82. Van Nimwegen E, Crutchfield JP, Huynen M (1999a) Neutral evolution of mutational robustness. Proc Natl Acad Sci USA 96(17):9716–9720CrossRefGoogle Scholar
  83. van Nimwegen E, Crutchfield JP, Mitchell M (1999b) Statistical dynamics of the royal road genetic algorithm. Theor Comput Sci 229:41–102Google Scholar
  84. Vanneschi L (2004) Theory and practice for efficient genetic programming. PhD thesis, Faculty of Science, University of Lausanne, SwitzerlandGoogle Scholar
  85. Vanneschi L (2007) Investigating problem hardness of real life applications. In: Riolo et al. (ed) Genetic programming theory and practive V, chapter 7, Springer US, pp 107–124Google Scholar
  86. Vanneschi L (2009) Fitness landscapes and problem hardness in genetic programming. In: Proceedings of the 11th annual conference companion on genetic and evolutionary computation conference: late breaking papers, GECCO ’09, ACM, New York, NY, USA, pp 3657–3684Google Scholar
  87. Vanneschi L, Clergue M, Collard P, Tomassini M, Verel S (2004) Fitness clouds and problem hardness in genetic programming. In: EuroGP, LNCS, Springer, pp 690–701Google Scholar
  88. Vanneschi L, Tomassini M, Collard P, Clergue M (2003) Fitness distance correlation in structural mutation genetic programming (2003) In: Ryan C, Soule T, Keijzer M, Tsang EPK, Poli R, Costa E (eds) Proceedings of the sixth European conference on genetic programming, EuroGP 2003, volume 2610 of LNCS, Springer, Essex, 14–16 April 2003, pp 455–464Google Scholar
  89. Vanneschi L, Pirola Y, Collard P, Tomassini M, Verel S, Mauri G (2006) A quantitative study of neutrality in GP Boolean landscapes. In: Keijzer M, Cattolico M, Arnold D, Babovic V, Blum C, Bosman P, Butz M-V, Coello Coello CA, Dasgupta D, Ficici SG, Foster J, Hernandez-Aguirre A, Hornby G, Lipson H, McMinn P, Moore J, Raidl G, Rothlauf F, Ryan C, Thierens D (eds) GECCO 2006: Proceedings of the 2006 conference on genetic and evolutionary computation, vol 1, ACM Press, Seattle, WA, USA, 8-12 July 2006, pp 895–902Google Scholar
  90. Vanneschi L, Tomassini M, Collard P, Vérel S, Pirola Y, Mauri G (2007) A comprehensive view of fitness landscapes with neutrality and fitness clouds. In: EuroGP’07: Proceedings of the 10th European conference on genetic programming, Springer, Berlin, Heidelberg, pp 241–250Google Scholar
  91. Vanneschi L, Valsecchi A, Poli R (2009) Limitations of the fitness-proportional negative slope coefficient as a difficulty measure. In: GECCO ’09: Proceedings of the 11th annual conference on genetic and evolutionary computation, ACM, New York, NY, USA, pp 1877–1878Google Scholar
  92. Vassilev VK, Fogarty TC, Miller JF (2000) Information characteristics and the structure of landscapes. Evol Comput 8:31–60CrossRefGoogle Scholar
  93. Vassilev VK, Miller JF (2000) The advantages of landscape neutrality in digital circuit evolution. In: ICES ’00: Proceedings of the third international conference on evolvable systems, Springer, London, UK, pp 252–263Google Scholar
  94. Vérel S, Collard P, Clergue M (2007) Scuba search: when selection meets innovation. CoRR, abs/0707.0643, 2007Google Scholar
  95. Wagner A (2005) Robustness, evolvability and neutrality. FEBS Lett 579(8):1772–1778Google Scholar
  96. Weicker K, Weicker N (2000) Burden and benefits of redundancy. In: Martin W, Spears W (eds) Foundations of genetic algorithms 6, San Francisco, Morgan Kaufmann, pp 313–333Google Scholar
  97. Wilke CO, Wang JL, Ofria C, Lenski RE, Adami C (2001) Evolution of digital organisms at high mutation rates leads to surviva of the flattest. Nature 412:331–333CrossRefGoogle Scholar
  98. Wright S (1932) The roles of mutation, inbreeding, crossbreeding and selection in evolution. In: Jones DF (ed) Proceedings of the sixth international Congress on genetics, vol 1, pp 356–366Google Scholar
  99. Yu T, Miller J (2001) Neutrality and the evolvability of Boolean function landscape. In: Miller JF, Tomassini M, Lanzi PL, Ryan C, Tettamanzi AGB, Langdon WB (eds) Genetic programming, Proceedings of EuroGP’2001, vol 2038, Springer, Lake Como, Italy, 18–20, pp 204–217Google Scholar
  100. Yu T, Miller J (2002) The role of neutral and adaptive mutation in an evolutionary search on the OneMax problem. In Langdon WB, Cantú-Paz E, Mathias KE, Roy R, Davis D, Poli R, Balakrishnan K, Honavar V, Rudolph G, Wegener J, Bull L, Potter MA, Schultz AC, Miller JF, Burke EK, Jonoska N (eds) Late breaking papers at the genetic and evolutionary computation conference (GECCO-2002), Morgan Kaufmann Publishers, New York, 9–13 July 2002Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Edgar Galván-López
    • 1
  • Riccardo Poli
    • 2
  • Ahmed Kattan
    • 2
  • Michael O’Neill
    • 1
  • Anthony Brabazon
    • 1
  1. 1.Natural Computing and Research Application GroupUniversity College DublinDublinIreland
  2. 2.School of Computer Science and Electronic EngineeringUniversity of EssexColchesterUK

Personalised recommendations