International Journal of Behavioral Medicine

, Volume 25, Issue 1, pp 17–29 | Cite as

Theoretical Perspectives of Adherence to Web-Based Interventions: a Scoping Review

  • Cathal Ryan
  • Michael Bergin
  • John SG Wells



The purpose of this paper is to review the literature as this relates to theoretical perspectives of adherence to web-based interventions, drawing upon empirical evidence from the fields of psychology, business, information technology and health care.


A scoping review of the literature utilising principles outlined by Arksey and O’Malley was undertaken.


Several relevant theoretical perspectives have emerged, eight of which are charted and discussed in this review. These are the Internet Intervention Model, Persuasive Systems Design, the ‘PERMA’ framework, the Support Accountability Model, the Model of User Engagement, the Technology Acceptance Model, the Unified Theory of Acceptance and Use of IT and the Conceptual Model of User Engagement.


The findings of the review indicate that an interdisciplinary approach, incorporating a range of technological, environmental and individual factors, may be needed in order to comprehensively explain user adherence to web-based interventions.


Web-based interventions Adherence Engagement Theory Model Framework 


Compliance with Ethical Standards


This review was funded through the Waterford Institute of Technology PhD Scholarship Programme.

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Bewick BM, Trusler K, Barkham M, Hill AJ, Cahill J, Mulhern B. The effectiveness of web-based interventions designed to decrease alcohol consumption—a systematic review. Prev Med. 2008;47(1):17–26.CrossRefPubMedGoogle Scholar
  2. 2.
    Neve M, Morgan PJ, Jones P, Collins C. Effectiveness of web-based interventions in achieving weight loss and weight loss maintenance in overweight and obese adults: a systematic review with meta-analysis. Obes Rev. 2010;11(4):306–21.CrossRefPubMedGoogle Scholar
  3. 3.
    Copeland J, Martin G. Web-based interventions for substance use disorders: a qualitative review. J Subst Abus Treat. 2004;26(2):109–16.CrossRefGoogle Scholar
  4. 4.
    Powell J, Hamborg T, Stallard N, Burls A, McSorley J, Bennett K, et al. Effectiveness of a web-based cognitive-behavioral tool to improve mental well-being in the general population: randomized controlled trial. J Med Internet Res. 2013;15(1):e2.CrossRefPubMedCentralGoogle Scholar
  5. 5.
    Murray E, White IR, Varagunam M, Godfrey C, Khadjesari Z, McCambridge J. Attrition revisited: adherence and retention in a web-based alcohol trial. J Med Internet Res. 2013;15(8):83–93.CrossRefGoogle Scholar
  6. 6.
    Eysenbach G. The law of attrition. J Med Internet Res. 2005;7(1):e11.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kelders SM, Kok RN, Ossebaard HC, Van Gemert-Pijnen JE. Persuasive system design does matter: a systematic review of adherence to web-based interventions. J Med Internet Res. 2012;14(6):e152.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Wangberg SC, Bergmo TS, Johnsen J. Adherence in internet-based interventions. Patient Prefer Adherence. 2008;2:57–65.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Vandelanotte C, Müller AM, Short CE, Hingle M, Nathan N, Williams SL, et al. Past, present, and future of eHealth and mHealth research to improve physical activity and dietary behaviors. J Nutr Educ Behav. 2016;48(3):219–28. e1.CrossRefPubMedGoogle Scholar
  10. 10.
    Prestwich A, Sniehotta FF, Whittington C, Dombrowski SU, Rogers L, Michie S. Does theory influence the effectiveness of health behavior interventions? Meta-analysis. Am Psychol Assoc; 2014.Google Scholar
  11. 11.
    Wantland DJ, Portillo CJ, Holzemer WL, Slaughter R, McGhee EM. The effectiveness of Web-based vs. non-Web-based interventions: a meta-analysis of behavioral change outcomes. J Med Internet Res. 2004;6(4):e40.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Michie S, Johnston M, Francis J, Hardeman W, Eccles M. From theory to intervention: mapping theoretically derived behavioural determinants to behaviour change techniques. Appl Psychol. 2008;57(4):660–80.CrossRefGoogle Scholar
  13. 13.
    Perski O, Blandford A, West R, Michie S. Conceptualising engagement with digital behaviour change interventions: a systematic review using principles from critical interpretive synthesis. Transl Behav Med. 2016:1–14.Google Scholar
  14. 14.
    Postel MG, de Haan HA, ter Huurne ED, van der Palen J, Becker ES, de Jong CAJ. Attrition in web-based treatment for problem drinkers. J Med Internet Res. 2011;13(4):e117-e.CrossRefGoogle Scholar
  15. 15.
    Neil A, Batterham P, Christensen H, Bennett K, Griffiths K. Predictors of adherence by adolescents to a cognitive behavior therapy website in school and community-based settings. J Med Internet Res. 2009;11(1):e6.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Rothert K, Strecher VJ, Doyle LA, Caplan WM, Joyce JS, Jimison HB, et al. Web-based weight management programs in an integrated health care setting: a randomized, controlled trial. Obesity. 2006;14(2):266–72.CrossRefPubMedGoogle Scholar
  17. 17.
    Kelders SM, Van Gemert-Pijnen JE, Werkman A, Nijland N, Seydel ER. Effectiveness of a Web-based intervention aimed at healthy dietary and physical activity behavior: a randomized controlled trial about users and usage. J Med Internet Res. 2011;13(2):e32.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Balmford J, Borland R, Benda P. Patterns of use of an automated interactive personalized coaching program for smoking cessation. J Med Internet Res. 2008;10(5):e54.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Schubart JR, Stuckey HL, Ganeshamoorthy A, Sciamanna CN. Chronic health conditions and internet behavioral interventions: a review of factors to enhance user engagement. CIN: Comput Inform Nurs. 2011;29(2):81–92.PubMedGoogle Scholar
  20. 20.
    Brouwer W, Kroeze W, Crutzen R, de Nooijer J, de Vries NK, Brug J, et al. Which intervention characteristics are related to more exposure to internet-delivered healthy lifestyle promotion interventions? A systematic review. J Med Internet Res. 2011;13(1):e2.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Beatty L, Binnion C. A systematic review of predictors of, and reasons for, adherence to online psychological interventions. Int J Behav Med. 2016;23(6):776–94.CrossRefPubMedGoogle Scholar
  22. 22.
    Rogers Everett M. Diffusion of innovations. New York. 1995;12.Google Scholar
  23. 23.
    Christensen H, Griffiths KM, Farrer L. Adherence in internet interventions for anxiety and depression: systematic review. J Med Internet Res. 2009;11(2):e13.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Christensen H, Mackinnon A. The law of attrition revisited. J Med Internet Res. 2006;8(3):e20.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Cavanagh K. Turn on, tune in and [don’t] drop out: engagement, adherence, attrition, and alliance with internet-based interventions. In: Bennett-Levy J, Richards DA, Farrand P, Christensen H, Griffiths KM, Kavanaugh DJ, et al., editors. Oxford guide to low intensity CBT interventions. Oxford guides in cognitive behavioural therapy. New York: Oxford University Press; 2010. p. 227–33.Google Scholar
  26. 26.
    Levac D, Colquhoun H, O’Brien KK. Scoping studies: advancing the methodology. Implement Sci. 2010;5(1):69.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Arksey H, O’Malley L. Scoping studies: towards a methodological framework. Int J Soc Res Methodol. 2005;8(1):19–32.CrossRefGoogle Scholar
  28. 28.
    Maxwell JA. Qualitative research design: an interactive approach. Thousand Oaks: Sage publications; 2012.Google Scholar
  29. 29.
    Ritterband LM, Thorndike FP, Cox DJ, Kovatchev BP, Gonder-Frederick LA. A behavior change model for internet interventions. Ann Behav Med. 2009;38(1):18–27.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Oinas-Kukkonen H, Harjumaa M. Persuasive systems design: key issues, process model, and system features. Commun Assoc Inf Syst. 2009;24(1):28.Google Scholar
  31. 31.
    Ludden GDS, van Rompay TJL, Kelders SM, van Gemert-Pijnen JEWC. How to increase reach and adherence of web-based interventions: a design research viewpoint. J Med Internet Res. 2015;17(7):e172-e.CrossRefGoogle Scholar
  32. 32.
    Short CE, Rebar AL, Plotnikoff RC, Vandelanotte C. Designing engaging online behaviour change interventions: a proposed model of user engagement. Eur Health Psychol. 2015;17(1):32–8.Google Scholar
  33. 33.
    Petty RE, Cacioppo JT. The elaboration likelihood model of persuasion. Communication and persuasion: Springer; 1986. p. 1–24.Google Scholar
  34. 34.
    Beatty L, Binnion C. A systematic review of predictors of, and reasons for, adherence to online psychological interventions. Int J behav Med. 2016;23(6):776–94.CrossRefPubMedGoogle Scholar
  35. 35.
    O’Brien HL, Toms EG. What is user engagement? A conceptual framework for defining user engagement with technology. J Am Soc Inf Sci Technol. 2008;59(6):938–55.CrossRefGoogle Scholar
  36. 36.
    Crutzen R, Cyr D, de Vries NK. Bringing loyalty to E-health: theory validation using three internet-delivered interventions. J Med Internet Res. 2011;13(3):107–17.CrossRefGoogle Scholar
  37. 37.
    Mohr D, Cuijpers P, Lehman K. Supportive accountability: a model for providing human support to enhance adherence to eHealth interventions. J Med Internet Res. 2011;13(1):e30.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Davis FD Jr. A technology acceptance model for empirically testing new end-user information systems: theory and results. Cambridge: Massachusetts Institute of Technology; 1986.Google Scholar
  39. 39.
    Dennison L, Morrison L, Lloyd S, Phillips D, Stuart B, Williams S, et al. Does brief telephone support improve engagement with a web-based weight management intervention? Randomized controlled trial. J Med Internet Res. 2014;16(3):e95.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Venkatesh V, Morris MG, Davis GB, Davis FD. User acceptance of information technology: toward a unified view. MIS Q. 2003:425–78.Google Scholar
  41. 41.
    Sun H, Zhang P. Causal relationships between perceived enjoyment and perceived ease of use: an alternative approach. J Assoc Inf Syst. 2006;7(9):24.Google Scholar
  42. 42.
    Attuquayefio S, Addo H. Review of studies with UTAUT as conceptual framework. Eur Sci J, ESJ. 2014;10(8).Google Scholar
  43. 43.
    Taiwo AA, DOWNE AG. The theory of user acceptance and use of technology (UTAUT): a meta-analytic review of empirical findings. J Theor Appl Inf Technol. 2013;49(1).Google Scholar
  44. 44.
    Khechine H, Lakhal S, Ndjambou P. A meta-analysis of the UTAUT model: eleven years later. Can J Adm Sci/Rev Can Sci Adm. 2016;33(2):138–52.CrossRefGoogle Scholar
  45. 45.
    Farrer LM, Griffiths KM, Christensen H, Mackinnon AJ, Batterham PJ. Predictors of adherence and outcome in internet-based cognitive behavior therapy delivered in a telephone counseling setting. Cogn Ther Res. 2014;38(3):358–67.CrossRefGoogle Scholar
  46. 46.
    Fogg BJ. Persuasive technologies. Commun ACM. 1999;42(5):27–9.CrossRefGoogle Scholar
  47. 47.
    Fogg BJ. Persuasive technology: using computers to change what we think and do. Ubiquity. 2002;2002:5.CrossRefGoogle Scholar
  48. 48.
    Fogg BJ, editor A behavior model for persuasive design. Proceedings of the 4th international Conference on Persuasive Technology; 2009: ACM.Google Scholar
  49. 49.
    Wildeboer G, Kelders SM, van Gemert-Pijnen JEWC. The relationship between persuasive technology principles, adherence and effect of web-based interventions for mental health: a meta-analysis. Int J Med Inform. 2016;96:71–85.CrossRefPubMedGoogle Scholar
  50. 50.
    Wildeboer L. Does the number of persuasive technology principles used in web-based interventions concerning mental health affect the effectiveness: a meta-analysis: University of Twente; 2015.Google Scholar
  51. 51.
    Pohlmeyer A. Design for happiness. Interfaces. 2012;92(8–11).Google Scholar
  52. 52.
    Seligman ME. Flourish: a visionary new understanding of happiness and well-being. Policy. 2011;27(3):60–1.Google Scholar
  53. 53.
    Titov N, Dear BF, Johnston L, Lorian C, Zou J, Wootton B, et al. Improving adherence and clinical outcomes in self- guided internet treatment for anxiety and depression: randomised controlled trial. PLoS ONE. 2013;8(7).Google Scholar
  54. 54.
    Furmark T, Carlbring P, Hedman E, Sonnenstein A, Clevberger P, Bohman B, et al. Guided and unguided self-help for social anxiety disorder: randomised controlled trial. Br J Psychiatry. 2009;195(5):440–7.CrossRefPubMedGoogle Scholar
  55. 55.
    Alfonsson S, Olsson E, Linderman S, Winnerhed S, Hursti T. Is online treatment adherence affected by presentation and therapist support? A randomized controlled trial. Comput Hum Behav. 2016;60:550–8.CrossRefGoogle Scholar
  56. 56.
    Mohr DC, Duffecy J, Ho J, Kwasny M, Cai X, Burns MN, et al. A randomized controlled trial evaluating a manualized telecoaching protocol for improving adherence to a web-based intervention for the treatment of depression. PLoS One. 2013;8(8):1–9.CrossRefGoogle Scholar
  57. 57.
    Duffecy J, Sanford S, Wagner L, Begale M, Nawacki E, Mohr DC. Project onward: an innovative e-health intervention for cancer survivors. Psycho-Oncology. 2013;22(4):947–51.CrossRefPubMedGoogle Scholar
  58. 58.
    Pilutti L, Dlugonski D, Sandroff B, Klaren R, Motl R. Randomized controlled trial of a behavioral intervention targeting symptoms and physical activity in multiple sclerosis. Mult Scler J. 2014;20(5):594–601.CrossRefGoogle Scholar
  59. 59.
    Schueller SM, Mohr DC, editors. Initial field trial of a coach-supported web-based depression treatment. Proceedings of the 9th International Conference on Pervasive Computing Technologies for Healthcare; 2015: ICST [Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering].Google Scholar
  60. 60.
    Zarski A-C, Lehr D, Berking M, Riper H, Cuijpers P, Ebert DD. Adherence to internet-based mobile-supported stress management: a pooled analysis of individual participant data from three randomized controlled trials. J Med Internet Res. 2016;18(6).Google Scholar
  61. 61.
    Fishbein M, Ajzen I. Belief, attitude, intention, and behavior: an introduction to theory and research. Reading: Addison-Wesley; 1975.Google Scholar
  62. 62.
    Venkatesh V, Davis FD. A theoretical extension of the technology acceptance model: four longitudinal field studies. Manag Sci. 2000;46(2):186–204.CrossRefGoogle Scholar
  63. 63.
    King WR, He J. A meta-analysis of the technology acceptance model. Inf Manag. 2006;43(6):740–55.CrossRefGoogle Scholar
  64. 64.
    Yarbrough AK, Smith TB. Technology acceptance among physicians: a new take on TAM. Med Care Res Rev. 2007;64(6):650–72.CrossRefPubMedGoogle Scholar
  65. 65.
    Holden RJ, Karsh B-T. The technology acceptance model: its past and its future in health care. J Biomed Inform. 2010;43(1):159–72.CrossRefPubMedGoogle Scholar
  66. 66.
    Ma Q, Liu L. The technology acceptance model: a meta-analysis of empirical findings. J Organ End User Comput [JOEUC]. 2004;16(1):59–72.CrossRefGoogle Scholar
  67. 67.
    Yousafzai SY, Foxall GR, Pallister JG. Technology acceptance: a meta-analysis of the TAM: part 1. J Model Manag. 2007;2(3):251–80.CrossRefGoogle Scholar
  68. 68.
    Murugesh-Warren A, Dubb S, Sudbury D, Nnajiuba U, Abdel-Gadir S, Caris J. An extension of the UTAUT 2 with a focus of age in healthcare: what do different ages want? Int J Integrat Care [IJIC]. 2015;15:1–3.Google Scholar
  69. 69.
    Csikszentmihalyi M. Flow and the psychology of discovery and invention. Harper Collins: New York; 1996.Google Scholar
  70. 70.
    Beardsley MC. Some persistent issues in aesthetics. The aesthetic point of view: selected essays 1982:285–7.Google Scholar
  71. 71.
    Stephenson W. The play theory of mass communication. New Brunswick: Transaction Publishers; 1964.Google Scholar
  72. 72.
    Toms EG. Information interaction: providing a framework for information architecture. J Assoc Inf Sci Technol. 2002;53(10):855–62.CrossRefGoogle Scholar
  73. 73.
    O’Brien H. Theoretical perspectives on user engagement. In: O’Brien H, Cairns P, editors. Why engagement matters: cross-disciplinary perspectives and innovations on user engagement with digital media. New York: Springer Publishing Company, Incorporated; 2016. p. 1–26.Google Scholar
  74. 74.
    Short CE, Vandelanotte C, Dixon MW, Rosenkranz R, Caperchione C, Hooker C, et al. Examining participant engagement in an information technology-based physical activity and nutrition intervention for men: the manup randomized controlled trial. JMIR Res protoc. 2014;3(1):e2.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    O’Brien HL, Toms EG. Examining the generalizability of the User Engagement Scale (UES) in exploratory search. Inf Process Manag. 2013;49(5):1092–107.CrossRefGoogle Scholar
  76. 76.
    O’Brien H, Cairns P. Why engagement matters: cross-disciplinary perspectives and innovations on user engagement with digital media. New York: Springer Publishing Company, Incorporated; 2016.Google Scholar
  77. 77.
    Wiebe EN, Lamb A, Hardy M, Sharek D. Measuring engagement in video game-based environments: investigation of the user engagement scale. Comput Hum Behav. 2014;32:123–32.CrossRefGoogle Scholar
  78. 78.
    van Gemert-Pijnen JE, Nijland N, van Limburg M, Ossebaard HC, Kelders SM, Eysenbach G, et al. A holistic framework to improve the uptake and impact of eHealth technologies. J Med Internet Res. 2011;13(4):e111.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Stegemann SK, Weg R, Ebenfeld L, Thiart H, Berking M, Funk B. Towards measuring user engagement in internet interventions for common mental disorders. In: Proceedings of the HCI 2012, the 26th BCS Conference on Human Computer Interaction, Birmingham, 12–14 September 2012. p. 1–4. Available from Accessed 12 Dec 2016.
  80. 80.
    Guertler D, Vandelanotte C, Kirwan M, Duncan MJ. Engagement and nonusage attrition with a free physical activity promotion program: the case of 10,000 steps Australia. J Med Internet Res. 2015;17(7):e176-e.CrossRefGoogle Scholar
  81. 81.
    Donkin L, Glozier N. Motivators and motivations to persist with online psychological interventions: a qualitative study of treatment completers. J Med Internet Res. 2012;14(3):284–95.CrossRefGoogle Scholar
  82. 82.
    Donkin L, Hickie IB, Christensen H, Naismith SL, Neal B, Cockayne NL, et al. Rethinking the dose-response relationship between usage and outcome in an online intervention for depression: randomized controlled trial. J Med Internet Res. 2013;15(10):e231.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Alfonsson, S. Treatment adherence in internet-based CBT. The effects of presentation, support and motivation. PhD [dissertation]. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine. Uppsala: Acta Universitatis Upsaliensis; 2016. Available from: Uppsala universitetsbibliotek.Google Scholar
  84. 84.
    Yardley L, Spring BJ, Riper H, Morrison LG, Crane DH, Curtis K, et al. Understanding and promoting effective engagement with digital behavior change interventions. Am J Prev Med. 2016;51(5):833–42.CrossRefPubMedGoogle Scholar
  85. 85.
    Kelders SM, Oinas-Kukkonen H, Oörni A, van Gemert-Pijnen JE. Health behavior change support systems as a research discipline; a viewpoint. Int J Med Inform. 2016;96:3–10.CrossRefPubMedGoogle Scholar
  86. 86.
    Sundström C, Gajecki M, Johansson M, Blankers M, Sinadinovic K, Stenlund-Gens E, et al. Guided and unguided internet-based treatment for problematic alcohol use—a randomized controlled pilot trial. PLoS One. 2016;11(7):e0157817.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Johansson M, Sinadinovic K, Hammarberg A, Sundström C, Hermansson U, Andreasson S, et al. Web-based self-help for problematic alcohol use: a large naturalistic study. Int J Behav Med. 2016:1–11.Google Scholar

Copyright information

© International Society of Behavioral Medicine 2017

Authors and Affiliations

  1. 1.Department of Nursing and Health Care, School of Health SciencesWaterford Institute of TechnologyWaterfordIreland
  2. 2.School of Health SciencesWaterford Institute of TechnologyWaterfordIreland

Personalised recommendations