Advertisement

Marine Biodiversity

, Volume 49, Issue 6, pp 2837–2850 | Cite as

Influence of endogenous and exogenous factors on the reproductive output of a cryptogenic calcareous sponge

  • Vanessa P. S. B. Calazans
  • Emilio LannaEmail author
Original Paper
  • 66 Downloads

Abstract

The propagule pressure exerts an important role during the bioinvasion process. However, this biological characteristic of invasive species is still poorly understood for marine invertebrates. Here, we investigated aspects of the propagule pressure of the cryptogenic calcareous sponge Heteropia cf. glomerosa in the northeastern coast of Brazil. The investigated population was continuously reproductively active. Oocytes were present mainly during the rainy season, while embryos and larvae only during the dry season. The reproductive effort of this species was among the highest observed for sponges. The wet weight of the species did not influence on the reproductive output, but the number of tubes with apical osculum comprising the sponge was related to the number of oocytes. The reproduction of H. cf. glomerosa seemed to be driven by temperature, tides, and photoperiod. Our findings indicate that this species presents an opportunistic life history strategy enabling it to reproduce early in its life cycle with abundant propagules. As photoperiod is one of the drivers of its reproduction, it is expected that in higher latitudes (where this species has been found), the reproductive effort may exert an even higher pressure for the establishment and dispersion of the species. If H. cf. glomerosa is confirmed as a non-native in the study area, our results indicate that the best time to apply field efforts to avoid the expansion and establishment of the species is during the rainy period, when fewer larvae are found.

Keywords

Propagule pressure Porifera Western Tropical Atlantic Photoperiod Bioinvasion 

Notes

Acknowledgements

We thank all the staff of the Laboratorio de Embriologia e Biologia Reprodutiva (LEBR)-UFBA for helping with the collections of the samples during the maternity leave of the first author. We also thank Socicam, the administration of the Nautical Tourist Terminal of Bahia, and Mr. Sergio Lobo for giving us access to the marina.

Funding information

This study was funded by Foundation for Research Support of the State of Bahia (FAPESB, JCB0014/2016), Programa de Apoio a Pesquisadores Emergentes UFBA (PRODOC), and the National Council for Scientific and Technological Development (CNPq, 477227/2013-9). VPSBC received a Scholarship during her Masters from CNPq.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed by the authors.

Sampling and field studies

All necessary permits for sampling and observational field studies have been obtained by the authors from the competent authorities and are mentioned in the acknowledgements.

Data availability

All data generated or analysed during this study are included in this published article and its supplementary information files.

Supplementary material

12526_2019_1013_MOESM1_ESM.xlsx (26 kb)
ESM 1 (XLSX 25 kb).

References

  1. Almeida ACS, Souza FBC, Vieira LM (2018) Malacostegine bryozoans (Bryozoa: Cheilostomata) from Bahia State, northeast Brazil: taxonomy and non-indigenous species. Mar Biodivers 48(3):1463–1488.  https://doi.org/10.1007/s12526-017-0639-x CrossRefGoogle Scholar
  2. Amano S, Hori I (1992) Metamorphosis of calcareous sponges 1. Ultrastructure of free-swimming larvae. Invertebr Reprod Dev 21:81–90CrossRefGoogle Scholar
  3. Barros F, Almeida ACS, Cavalcanti FF, Miranda RJ, Nunes JACC, Reis-Filho JA, Silva EC (2018) Espécies marinhas exóticas e invasoras na Baía de Todos os Santos. In: Hatje V, Dantas LMV, Andrade JB (eds) Baía de Todos os Santos: Avanços nos estudos de longo prazo. EdUFBA, Salvador, pp 127–155Google Scholar
  4. Bauer RT (1989) Continuous reproduction and episodic recruitment in nine shrimp species inhabiting a tropical seagrass meadow. J Exp Mar Biol Ecol 127:175–187.  https://doi.org/10.1016/0022-0981(89)90183-4 CrossRefGoogle Scholar
  5. Becerro MA (2008) Quantitative trends in sponge ecology research. Mar Ecol 29:167–177.  https://doi.org/10.1111/j.1439-0485.2008.00234.x CrossRefGoogle Scholar
  6. Berasategui AA, Hoffmeyer MS, Biancalana F, Fernandez Severini M, Menendez MC (2009) Temporal variation in abundance and fecundity of the invading copepod Eurytemora americana in Bahía Blanca Estuary during an unusual year. Estuar Coast Shelf Sci 85:82–88.  https://doi.org/10.1016/j.ecss.2009.03.008 CrossRefGoogle Scholar
  7. Best K, McKenzie CH, Couturier C (2017) Reproductive biology of an invasive population of European green crab, Carcinus maenas, in Placentia Bay, Newfoundland. Manag Biol Inv 8:247–255.  https://doi.org/10.3391/mbi.2017.8.2.12 CrossRefGoogle Scholar
  8. Borojevic R (1969) Étude du développement et de la différenciation cellulaire d’éponges calcaires calcinéennes (genres Clathrina et Ascandra). Ann Embryol Morphogenèse 2:15–36Google Scholar
  9. Bowerbank JS (1873) Contributions to a general history of the Spongiadae. Part IV. Proc Zool Soc London 1873:3–25 pls I-IVGoogle Scholar
  10. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer Science & Business Media, New YorkGoogle Scholar
  11. Chagas C, Cavalcanti FF (2017) Taxonomy of calcareous sponges (Porifera, Calcarea) sampled on artificial substrates of a recreational marina in the Tropical Northeastern Brazilian coast. Zootaxa 4363:203–224.  https://doi.org/10.11646/zootaxa.4363.2.2 CrossRefPubMedGoogle Scholar
  12. Darling ES, Graham NAJ, Januchowski-Hartley FA, Nash KL, Pratchett MS, Wilson SK (2017) Relationships between structural complexity, coral traits, and reef fish assemblages. Coral Reefs 36:561–575.  https://doi.org/10.1007/s00338-017-1539-z CrossRefGoogle Scholar
  13. de Caralt S, González J, Turon X, Uriz MJ (2018) Reproductive strategies of two common sympatric Mediterranean sponges: Dysidea avara (Dictyoceratida) and Phorbas tenacior (Poecilosclerida). PeerJ 6:e5458.  https://doi.org/10.7717/peerj.5458 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Eerkes-Medrano DI, Leys SP (2006) Ultrastructure and embryonic development of a syconoid calcareous sponge. Invertebr Biol 125:177–194.  https://doi.org/10.1111/j.1744-7410.2006.00051.x CrossRefGoogle Scholar
  15. Elliot GRD, MacDonald TA, Leys SP (2004) Sponge larval phototaxis: a comparative study. Boll Mus Ist Biol Univ Genova 68:291–300Google Scholar
  16. Elvin DW (1976) Seasonal growth and reproduction of an intertidal sponge, Haliclona permollis (Bowerbank). Biol Bull 151:108–125CrossRefGoogle Scholar
  17. Ereskovsky AV (2003) Problems of coloniality, modularity, and individuality in sponges and special features of their morphogeneses during growth and asexual reproduction. Russ J Mar Biol 29:S46–S56CrossRefGoogle Scholar
  18. Fell PE (1993) Porifera. In: Adiyodi KG, Adiyodi RG (eds) Reproductive biology of invertebrates. Volume VI, Part A: Asexual propagation and reproductive strategies. Wiley, Chichester, pp 1–44Google Scholar
  19. Garcia-Hernandez JE et al (2019) Associated fauna with the calcareous sponge Clathrina lutea from Puerto Rico. Journal Issue: pagesGoogle Scholar
  20. Gregg WW, Casey NW (2004) Global and regional evaluation of the SeaWiFS chlorophyll data set. Remote Sens Environ 93:463–479.  https://doi.org/10.1016/j.rse.2003.12.012 CrossRefGoogle Scholar
  21. Hajdu E, Peixinho S, Fernandez JCC (2011) Esponjas marinhas da Bahia: guia de campo e laboratório vol 45. Série Livros. Museu Nacional, Rio de JaneiroGoogle Scholar
  22. Hedge LH, Johnston EL (2012) Propagule pressure determines recruitment from a commercial shipping pier. Biofouling 28(1):73–85.  https://doi.org/10.1080/08927014.2011.652622 CrossRefPubMedGoogle Scholar
  23. Jänes H, Kotta J, Herkül K (2015) High fecundity and predation pressure of the invasive Gammarus tigrinus cause decline of indigenous gammarids. Estuar Coast Shelf Sci 165:185–189.  https://doi.org/10.1016/j.ecss.2015.05.014 CrossRefGoogle Scholar
  24. Johnson MF (1978) Studies on the reproductive cycles of the calcareous sponges Clathrina coriacea and C. blanca. Mar Biol 50:73–79CrossRefGoogle Scholar
  25. Johnston EL, Piola RF, Clark GF (2009) The role of propagule pressure in invasion success. In: Rilov G, Crooks JA (eds) Biological invasions in marine ecosystems, vol 204. Ecological Studies. Springer Berlin Heidelberg, pp 133-151.  https://doi.org/10.1007/978-3-540-79236-9-7
  26. Klautau M, Monteiro L, Borojevic R (2004) First occurrence of the genus Paraleucilla (Calcarea, Porifera) in the Atlantic Ocean: P. magna sp. nov. Zootaxa 710:1–8.  https://doi.org/10.11646/zootaxa.710.1.1 CrossRefGoogle Scholar
  27. Klautau M, Cóndor-Luján B, Azevedo F, Leocorny P, Rocha Brandão F, Cavalcanti FF (in press) Heteropia glomerosa (Bowerbank, 1873) (Porifera, Calcarea, Calcaronea), a new alien species in the Atlantic. Systematics and BiodiversityGoogle Scholar
  28. Köppen W (1884) Die Wärmezonen der Erde, nach der Dauer der heissen, gemässigten und kalten Zeit und nach der Wirkung der Wärme auf die organische Welt betrachtet. Meteorol Z 20(3):351–360CrossRefGoogle Scholar
  29. Lanna E, Klautau M (2016) Some aspects of the oogenesis of three species of clathrinid sponges (Calcarea, Porifera). J Mar Biol Ass U K 96:529–539.  https://doi.org/10.1017/S0025315415001290 CrossRefGoogle Scholar
  30. Lanna E, Klautau M (2018) Life history and reproductive dynamics of the cryptogenic calcareous sponge Sycettusa hastifera (Porifera, Calcarea) living in tropical rocky shores. J Mar Biol Ass U K 98:505–514.  https://doi.org/10.1017/S0025315416001466 CrossRefGoogle Scholar
  31. Lanna E, Monteiro LC, Klautau M (2007) Life cycle of Paraleucilla magna Klautau, Monteiro and Borojevic, 2004 (Porifera, Calcarea). In: Custódio MR, Lôbo-Hajdu G, Hajdu E, Muricy G (eds) Porifera research - biodiversity, innovation and sustainability, vol 28. Museu Nacional - Série Livros, Rio de Janeiro, pp 413–418Google Scholar
  32. Lanna E, Paranhos R, Paiva PC, Klautau M (2015) Environmental effects on the reproduction and fecundity of the introduced calcareous sponge Paraleucilla magna in Rio de Janeiro, Brazil. Mar Ecol 36:1075–1087.  https://doi.org/10.1111/maec.12202 CrossRefGoogle Scholar
  33. Lanna E, Rattis L, Cavalcanti FF (2017) The presence of the diagnostic character of the genus Paraleucilla (Amphoriscidae, Calcarea, Porifera) may depend on the volume and body wall thickness of the sponges. Invertebr Biol 136:321–329.  https://doi.org/10.1111/ivb.12185 CrossRefGoogle Scholar
  34. Lanna E, Cajado B, Santos-da-Silva C, da Hora J, Porto U, Vasconcellos V (2018) Is the Orton’s rule still valid? Tropical sponge fecundity, rather than periodicity, is modulated by temperature and other proximal cues. Hydrobiologia 815:187–205.  https://doi.org/10.1007/s10750-018-3562-7 CrossRefGoogle Scholar
  35. Leite-Castro LV, Souza Junior J, Salmito-Vanderley CSB, Nunes JF, Hamel J-F, Mercier A (2016) Reproductive biology of the sea cucumber Holothuria grisea in Brazil: importance of social and environmental factors in breeding coordination. Mar Biol 163:1–13.  https://doi.org/10.1007/s00227-016-2842-x CrossRefGoogle Scholar
  36. Lessa GC, Souza MFL, Júnior POM, Gomes DF, Souza CS, Teixeira CEP et al (2018) Variabilidade intra-anual da oceanografia da Baía de Todos os Santos evidências de três anos de monitoramento. In: Hatje V, Dantas LMV, Andrade JBd (eds) Baía de Todos os Santos: Avanços nos estudos de longo prazo. EdUFBA, Salvador, pp 156–192Google Scholar
  37. Lim SC, Putchakarn S, Thai MQ, Wang D, Huang YM (2016) Inventory of sponge fauna from the Singapore Strait to Taiwan Strait along the western coastline of the South China Sea. Raffles Bull Zool 34:104–129Google Scholar
  38. Longo C, Pontassuglia C, Corriero G, Gaino E (2012) Life-cycle traits of Paraleucilla magna, a calcareous sponge invasive in a coastal Mediterranean Basin. PLoS ONE 7:e42392.  https://doi.org/10.1371/journal.pone.0042392 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Maldonado M, Riesgo A (2008) Reproduction in Porifera: a synoptic overview. Treb Soc Catalana Biol 59:29–49Google Scholar
  40. Manuel M (2006) Phylogeny and evolution of calcareous sponges. Can J Zool 84:225–241.  https://doi.org/10.1080/10635150390196966 CrossRefGoogle Scholar
  41. Mercier A, Hamel J-F (2009) Endogenous and exogenous control of gametogenesis and spawning in echinoderms. Adv Mar Biol 55:1–302.  https://doi.org/10.1016/S0065-2881(09)55001-8 CrossRefGoogle Scholar
  42. Micael J, Jardim N, Núñez C, Occhipinti-Ambrogi A, Costa AC (2016) Some Bryozoa species recently introduced into the Azores: reproductive strategies as a proxy for further spread. Helgol Mar Res 70:7.  https://doi.org/10.1186/s10152-016-0458-7 CrossRefGoogle Scholar
  43. Muthiga NA, Kawaka JA, Ndirangu S (2009) The timing and reproductive output of the commercial sea cucumber Holothuria scabra on the Kenyan coast. Estuar Coast Shelf Sci 84:353–360.  https://doi.org/10.1016/j.ecss.2009.04.011 CrossRefGoogle Scholar
  44. Nozawa Y, Huang Y-S, Hirose E (2016) Seasonality and lunar periodicity in the sexual reproduction of the coral-killing sponge, Terpios hoshinota. Coral Reefs 35:1071–1081.  https://doi.org/10.1007/s00338-016-1417-0 CrossRefGoogle Scholar
  45. Olive PJW (1995) Annual breeding cycles in marine invertebrates and environmental-temperature - probing the proximate and ultimate causes of reproductive synchrony. J Therm Biol 20:79–90.  https://doi.org/10.1016/0306-4565(94)00030-M CrossRefGoogle Scholar
  46. Oliveira F, Lanna E (2018) Mind your neighbourhood: biotic and abiotic factors shaping the small‐scale spatial distribution of sponges (Demospongiae) in urban beaches. Mar Ecol 39:e12524.  https://doi.org/10.1111/maec.12524 CrossRefGoogle Scholar
  47. Padua A, Lanna E, Klautau M (2013a) Macrofauna inhabiting the sponge Paraleucilla magna (Porifera: Calcarea) in Rio de Janeiro, Brazil. J Mar Biol Assoc U K 93:889–898.  https://doi.org/10.1017/S0025315412001804 CrossRefGoogle Scholar
  48. Padua A, Lanna E, Zilberberg C, Paiva PC, Klautau M (2013b) Recruitment, habitat selection and larval photoresponse of Paraleucilla magna (Porifera, Calcarea) in Rio de Janeiro, Brazil. Mar Ecol 34:56–61.  https://doi.org/10.1111/j.1439-0485.2012.00524.x CrossRefGoogle Scholar
  49. Padua A, Fonseca CA, Silva-Ferreira TCG, Klautau M (2019) First report of a dromiid crab disguised as a calcareous sponge. Mar Biodivers 49(3):1067–1068.  https://doi.org/10.1007/s12526-019-00965-9 CrossRefGoogle Scholar
  50. Perez V, Fernandez E, Maranon E, Serret P, Garcia-Soto C (2005) Seasonal and interannual variability of chlorophyll-a and primary production in the Equatorial Atlantic: in situ and remote sensing observations. J Plankton Res 27:189–197.  https://doi.org/10.1093/plankt/fbh159 CrossRefGoogle Scholar
  51. Pérez T, Perrin B, Carteron S, Vacelet J, Boury-Esnault N (2006) Celtodoryx girardae gen. nov. sp. nov., a new sponge species (Poecilosclerida: Demospongiae) invading the Gulf of Morbihan (North East Atlantic, France). Cah Biol Mar 47:205–214Google Scholar
  52. Przeslawski R, Ahyong S, Byrne M, Wörheide G, Hutchings PAT (2008) Beyond corals and fish: the effects of climate change on noncoral benthic invertebrates of tropical reefs. Global Change Biol 14:2773–2795.  https://doi.org/10.1111/j.1365-2486.2008.01693.x CrossRefGoogle Scholar
  53. R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL. http://www.R-project.org/. Accessed December 2018
  54. Rasband WS (2018) ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, https://imagej.nih.gov/ij/, 1997-2018. Accessed December 2018
  55. Riesgo A, Maldonado M (2008) Differences in reproductive timing among sponges sharing habitat and thermal regime. Invertebr Biol 127:357–367.  https://doi.org/10.1111/j.1744-7410.2008.00128.x CrossRefGoogle Scholar
  56. Riesgo A, Cavalcanti FF, Kenny NJ, Ríos P, Cristobo J, Lanna E (2018) Integrative systematics of clathrinid sponges: morphological, reproductive and phylogenetic characterisation of a new species of Leucetta from Antarctica (Porifera, Calcarea, Calcinea) with notes on the occurrence of flagellated sperm. Invertebr Syst 32:827–841.  https://doi.org/10.1071/IS17033 CrossRefGoogle Scholar
  57. Rilov G, Crooks JA (2009) Biological invasions in marine ecosystems vol 204. Springer, Berlin HeidelbergCrossRefGoogle Scholar
  58. Rocha RM, Bonnet NYK, Baptista MS, Beltramin FS (2012) Introduced and native Phlebobranch and Stolidobranch solitary ascidians (Tunicata: Ascidiacea) around Salvador, Bahia, Brazil. Zoologia 29:39–53.  https://doi.org/10.1590/S1984-46702012000100005 CrossRefGoogle Scholar
  59. Ruiz GM, Hewitt CL (2002) Toward understanding patterns of coastal marine invasions: a prospectus. In: Leppäkoski E, Gollasch S, Olenin S (eds) Invasive aquatic species of Europe. Distribution, impacts and management. Springer, Netherlands, pp 529–547.  https://doi.org/10.1007/978-94-015-9956-6_53 CrossRefGoogle Scholar
  60. Sakai AK et al (2001) The population biology of invasive species. Annu Rev Ecol Syst 32:305–332.  https://doi.org/10.1146/annurev.ecolsys.32.081501.114037 CrossRefGoogle Scholar
  61. Sarà M, Orsi LR (1975) Sex differentiation in Sycon (Porifera Calcispongiae). Pubbl Statz Zool Napoli 39:618–634Google Scholar
  62. Scrosati RA, Ellrich JA (2016) A 12-year record of intertidal barnacle recruitment in Atlantic Canada (2005-2016): relationships with sea surface temperature and phytoplankton abundance. PeerJ 4:e2623.  https://doi.org/10.7717/peerj.2623 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Underwood AJ, Fairweather PG (1989) Supply-side ecology and benthic marine assemblages. Trends Ecol Evol 4:16–20.  https://doi.org/10.1016/0169-5347(89)90008-6 CrossRefPubMedGoogle Scholar
  64. van Koolwijk T (1982) Calcareous sponges of the Netherlands (Porifera, Calcarea). Bull Zool Mus Univ Amst 8:89–98Google Scholar
  65. Van Soest RWM, Boury-Esnault N, Hooper JNA, Rützler K, de Voogd NJ, Alvarez B, Hajdu E, Pisera AB, Manconi R, Schönberg C, Klautau M, Picton B, Kelly M, Vacelet J, Dohrmann M, Díaz M-C, Cárdenas P, Carballo JL, Ríos P, Downey R (2018) World Porifera database. Heteropia glomerosa (Bowerbank, 1873). Accessed at: http://www.marinespecies.org/porifera/porifera.php?p=taxdetails&id=164455 on 2019-08-12. Accessed 15 Dec 2018
  66. Wood SN (2006) Generalized additive models: an introduction with R. Chapman and Hall/CRC, Boca RatonCrossRefGoogle Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung 2019

Authors and Affiliations

  1. 1.Instituto de BiologiaUniversidade Federal da BahiaSalvadorBrazil
  2. 2.National Institute of Science and Technology in Interdisciplinary and Transdisciplinary Studies in Ecology and Evolution (INCT IN-TREE)Universidade Federal da BahiaSalvadorBrazil

Personalised recommendations