Advertisement

Saccocirridae (Annelida) from the Canary Islands with a description of Saccocirrus slateri sp. nov.

  • Maikon Di DomenicoEmail author
  • Alejandro Martínez
  • Katrine Worsaae
MeioLanza
Part of the following topical collections:
  1. Interstitial and Cave Diversity in Atlantic Oceanic Islands

Abstract

Two species of Saccocirrus, S. slateri sp. nov. and S. parvus Gerlach, 1953 are recorded from samples collected in nine sandy beaches throughout the Canary Islands. Detailed descriptions combining live observations with light and electron scanning microscopy are provided for each species, as well as an updated molecular phylogeny of the genus including all described European species. Saccocirrus slateri sp. nov. was found in sediments exposed to strong wave action along beaches and piers of Tenerife and La Palma islands, while S. parvus was found in more sheltered subtidal environments of Tenerife, La Palma, and Lanzarote islands. Saccocirrus slateri sp. nov. resembles the European S. papillocercus but differs in possessing a longer trunk, more segments, and hooked chaetae. Saccocirrus parvus from Canary Island fits the description of S. parvus but differs in the presence of unequal prongs in the longest chaeta and minor details regarding the arrangement of the gonads. These differences are considered to be intraspecific variation given that the available DNA sequences are identical, and we here provide an emended description. The description of S. slateri sp. nov. increases the number of species of Saccocirridae to 23. We discuss habitat preferences of the genus Saccocirrus in the light of this newly available information.

Keywords

Taxonomy Interstitial Sandy beaches Meiofauna Microscopy Molecular phylogeny 

Notes

Acknowledgments

We thank our colleagues and participants of the I International Workshop on Marine and Anchialine Meiofauna in Lanzarote. The workshop was supported by Cabildo de Lanzarote, as well as Reserva de la Biosfera. Collection permits were facilitated by Elena Mateo Mederos and Leopoldo Moro Abad. especially thank the staff at the Aula de la Naturaleza and Carlos Dizzi and his family from Las Pardelas Park kindly hosted us during our field trips in Lanzarote. Samples in Lanzarote were collected with the assistance of divers Luis E. Cañadas, Enrique Domínguez, Carola D Jorge, and Ralf Schoenermark. We thank Jon Norenburg for provided the samples from Charco Verde in La Palma. We are also in debt to Gustavo Gonzalez (IEO), who collected the samples from Tenerife together with AM.

Funding information

This study and collections at the Canary Islands were mainly funded by Reserva de la Biosfera (Government of Lanzarote). This research is also result of the Freja grant of K.W. as well as research grants to K.W. from the Danish Independent Research Council (Grant # 272-06-0260) and Carlsberg Foundation (Grant # 2010_01_0802), which funded the laboratory work and salaries. This study was also supported by the Brazilian National Council for Technological and Scientific Development (CNPq—Process 140611/2008-8), which provided the PhD fellowship of MDD, and São Paulo Research Foundation (FAPESP—Process 2012/ 08581-0, 2013/04358-7) which provided postdoctoral fellowships and grants for MDD. Collections in Lanzarote and secondary laboratory costs were financially supported by the Danish Research Council (grant no. 272–06–0260 to KW) and the Carlsberg Foundation (2010_01_0802 to KW) as well as Consejería de Medio Ambiente del Gobierno de Lanzarote and authorized by Gobierno de Canarias and Centros Turísticos. AM was supported by Marie Skolodowska-Curie Individual Grant (IFEF), H2020 Program of the EU, number 745530—“ANCAVE—Anchialine caves to understand evolutionary processes”.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed by the authors.

Sampling and field studies

All necessary permits for sampling and observational field studies have been obtained by the authors from the competent authorities and are mentioned in the acknowledgments, if applicable.

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Andrade SC, Novo M, Kawauchi GY, Worsaae K, Pleijel F, Giribet G, Rouse GW (2015) Articulating “archiannelids”: phylogenomics and annelid relationships, with emphasis on meiofaunal taxa. Mol Biol Evol 32(11):2860–2875CrossRefGoogle Scholar
  2. Bailey-Brock JH, Dreyer J, Brock RE (2003) Three new species of Saccocirrus (Polychaeta: Saccocirridae) from Hawai’i. Pacific Sci 57:463–478CrossRefGoogle Scholar
  3. Bobretzky N (1868) Bristleworms (Annulata Chaetopoda) of the Bay of Sevastopol [in Russia]. Trudy Russkikh Estestvoispytatelei v S. Peterburge 1868:137–160Google Scholar
  4. Bobretzky N (1870) On the fauna of the Black Sea. [in Russian]. Kiev Odschestva estest. Zapisky Zapisky Kievskago obshchestva estestvoispytateleĭ. 1:188–274Google Scholar
  5. Bobretzky NV (1872) Saccocirrus papillocercus n.gen., n.sp. - Comparative anatomy of a new type of annelid. Zapiski Kievskago obshchestva estestvoispytateleĭ. 2: 211-259.Google Scholar
  6. Brown R (1981) Saccocirridae (Annelida: Archiannelida) from the central coast of New South Wales. Aust J Marine Freshwater Res 32:439–456CrossRefGoogle Scholar
  7. Cabioch L, L'Hardy JP, Rullier F (1968) Inventaire de la faune marine de Roscoff. Annélides, Station Biologique de RoscoffGoogle Scholar
  8. Curini-Galletti M, Artois T, Delogu V, De Smet WH, Fontaneto D, Jondelius U, Leasi F, Martínez A, Meyer-Wachsmuth I, Nilsson KS, Tongiorgi P, Worsaae K, Todaro MA (2012) Patterns of diversity in soft-bodied meiofauna: dispersal ability and body size matter. PLoS One 7(3):e33801CrossRefPubMedPubMedCentralGoogle Scholar
  9. Dauvin JC (1978) Observations sur la faune annélidienne de la région de Roscoff. Travaux Station Biologique de Roscoff 24:3–4Google Scholar
  10. Delamare-Deboutteville C, Gerlach S, Siewing R (1954) Recherches sur la faune des eaux souterraines littorales du Golfe de Gascogne. Vie Milieu 5:373–407Google Scholar
  11. Di Domenico M, Lana PC, Garraffoni ARS (2009) Distribution patterns of interstitial polychaetes in sandy beaches of southern Brazil. Mar Ecol 30:47–62CrossRefGoogle Scholar
  12. Di Domenico M, Martínez A, Lana P d C, Worsaae K (2013) Protodrilus (Protodrilidae, Annelida) from the southern and southeastern Brazilian coasts. Helgol Mar Res 67:733–748CrossRefGoogle Scholar
  13. Di Domenico M, Martínez A, Almeida TCM, Martins MO, Worsaae K, Lana PC (2014a) Response of the meiofaunal annelid Saccocirrus pussicus (Saccocirridae) to sandy beach morphodynamics. Hydrobiologia 734(1):1–16CrossRefGoogle Scholar
  14. Di Domenico M, Martínez A, Lana P, Worsaae K (2014b) Molecular and morphological phylogeny of Saccocirridae (Annelida) reveals two cosmopolitan clades with specific habitat preferences. Mol Phylogenet Evol 75:202–218CrossRefPubMedPubMedCentralGoogle Scholar
  15. Di Domenico M, Martínez A, Amaral C, Lana P, Worsaae K (2014c) Saccocirridae (Annelida) from the southern and southeartern Brazilian coasts. Mar Biodivers 44(3):313–325CrossRefGoogle Scholar
  16. du Bois-Reymond Marcus E (1946) On a new Archeannelid, Saccocirrus gabriellae, from Brazil. Comun Zool Mus Hist Nat Montev 37(2):1–11Google Scholar
  17. du Bois-Reymond Marcus E (1948) Further archiannelids from Brazil. Comun Zool Mus Hist Nat Montev 2:1–22Google Scholar
  18. Eakin RM, Martin GG, Reed CT (1977) Evolutionary significance of fine structure of Archiannelid eyes. Zoomorphologie 88:1–18CrossRefGoogle Scholar
  19. Felsenstein J (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39(4): 783-791.Google Scholar
  20. Fize A (1963) Contribution à l’étude de la microfaune des sables littoraux du Golfe d’Aigues-Mortes. Vie et Milieu 14:669–774Google Scholar
  21. Fonseca VG, Carvalho GR, Nichols B, Quince C, Johnson HF, Neill SP, Creer S (2014) Metagenetic analysis of patterns of distribution and diversity of marine meiobenthic eukaryotes. Glob Ecol Biogeogr 23(11):1293–1302CrossRefGoogle Scholar
  22. Fontaneto D (2011). Biogeography of Microscopic Organisms: Is Everything Small Everywhere? (Systematics Association Special Volume Series). Cambridge: Cambridge University Press. 365pp. Google Scholar
  23. Gerlach SA (1953) Zur Kinntnis der Archianneliden des Mittelmeeres. Kiel Meeresforsch 9:248–251Google Scholar
  24. Gonzalez BC, Petersen HCB, Di Domenico M, Martínez A, Armenteros M, García-Machado E, Møller PR, Worsaae K (2017) Phylogeny and biogeography of the scaleless scale worm Pisione (Sigalionidae, Annelida). Ecol Evol 7:2894–2915CrossRefGoogle Scholar
  25. Gusjewa S (1929) Zur Kenntnis von Saccocirrus. Zool Anz 84:151–157Google Scholar
  26. Gusmão F, Di Domenico M, Amaral ACZ, Martínez A, Gonzalez BC, Worsaae K, do Sul JAI, Lana PC (2016) In situ ingestion of microfibres by meiofauna from sandy beaches. Environ Pollut 216:584–590Google Scholar
  27. Hausen H (2005) Chaetae and chaetogenesis in polychaetes (Annelida). In: Bartolomaeus T, Purschke G (eds) Morphology, Molecules, Evolution and Phylogeny in Polychaeta and Related Taxa. Developments in Hydrobiology, vol 179. Springer, Dordrecht, pp 37-52Google Scholar
  28. Helm C, Beckers P, Bartolomaeus T, Drukewitz SH, Kourtesis I, Weigert A, Bleidorn C (2018) Convergent evolution of the ladder-like ventral nerve cord in Annelida. Front Zool 15(1):36CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hermans CO (1969) Systematic position of Archiannelida. Syst Zool 18:85–102CrossRefGoogle Scholar
  30. Higgins RP, Thiel H (1988) Introduction to the study of meiofauna. Smithsonian Institution Press, WashingtonGoogle Scholar
  31. Jörger KM, Neusser TP, Brenzinger B, Schrödl M (2014) Exploring the diversity of mesopsammic gastropods: how to collect, identify, and delimitate small and elusive sea slugs? Am Malacol Bull 32:290–307CrossRefGoogle Scholar
  32. Jouin C (1970) Recherches sur les Protodrilidae (Archiannélides): 1. Étude morphologique et systématque du genre Protodrilus. Cah Biol Mar 11:367–434Google Scholar
  33. Jouin C (1975) Étude de quelques Archiannélides des côtes d’Afrique du Sud: description de Saccocirrus heterochaetus n. sp. (Archiannélide, Saccocirridae). Cah Biol Mar 16:97–110Google Scholar
  34. Jouin C, Gambi MC (2007) Description of Saccocirrus goodrichi sp. nov. (Annelida: Polychaeta: Saccocirridae), a new Mediterranean species and new data on the chaetae of S. papillocercus and S. major. Cah Biol Mar 48:381–390Google Scholar
  35. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30(4):772–780CrossRefPubMedPubMedCentralGoogle Scholar
  36. Katoh K, Toh H (2008) Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 9(4):286–298CrossRefPubMedPubMedCentralGoogle Scholar
  37. Katoh K, Kuma KI, Toh H, Miyata T (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33(2):511–518CrossRefPubMedPubMedCentralGoogle Scholar
  38. Lagos AM, Leon M, Quiroga SY, Martínez A (2018) Interstitial annelids from the Caribbean Coast of Colombia. Rev Biol Trop 66(2):658–673CrossRefGoogle Scholar
  39. Langerhans P (1880) Die Wurmfauna von Madeira. II. Zeitschrift für wissenschaftliche Zoologie 33:267–316Google Scholar
  40. Magagnini G (1980) Archianellidi della Meloria (Livorno). Atti Soc Tosc Sci Nat Mem 87:299–308Google Scholar
  41. Martin GG (1977) Saccocirrus sonomacus sp. nov., a new archiannelid from California. Trans Am Microsc Soc 96:97–103.Google Scholar
  42. Martin GG (1978) The duo-gland adhesive system of the Archiannelids Protodrilus and Saccocirrus and the Turbellarian Monocelis. Zoomorphologie 91:63–75CrossRefGoogle Scholar
  43. Martínez A, Di Domenico M, Jörger K, Norenburg J, Worsaae K (2013) Description of three new species of Protodrilus (Annelida, Protodrilidae) from Central America. Mar Biol Res 9:676–691CrossRefGoogle Scholar
  44. Martínez A, Di Domenico M, Rouse G, Worsaae K (2015) Phylogeny of Protodrilidae (Annelida) inferred by total evidence analyses. Cladistics 31:250–276CrossRefGoogle Scholar
  45. Martínez A, Purschke G, Worsaae K (2018) Protodrilidae Hatschek, 1888. In: Beutel RG, Kristensen NP, Leschen R, Purschke W, Westheide W, Zachos F (eds) Handbook of Zoology Online. Walter de Gruyter, BerlinGoogle Scholar
  46. Martínez A, Di Domenico M, Leasi F, Todaro MA, Dal Zotto M, Gobert S, Artois T, Norenburg J, Jörger KM, Núñez JA, Fontaneto D, Worsaae K (2019) Patterns of diversity and endemism of soft-bodied meiofauna in an oceanic island, Lanzarote, Canary Islands. Mar Biodivers 49(5).  https://doi.org/10.1007/s12526-019-01007-0
  47. Mastepanova EA (2004) The interstitial Polychaeta of Russian seas. Invertbr Zool 1:59–64CrossRefGoogle Scholar
  48. McLachlan, A., & Defeo, O. (2017). The ecology of sandy shores. London: Academic Press. 560ppGoogle Scholar
  49. Núñez J, Brito MC, Docoito JR (2005) Anélidos poliquetos de Canarias: Catálogo de especies, distribución y hábitats. Vieraea 33:297–321Google Scholar
  50. Parry L, Tanner A, Vinther J (2014) The origin of annelids. Palaeontology 57(6):1091–1103CrossRefGoogle Scholar
  51. Pierantoni U (1907) Il genere Saccocirrus Bobretzky e le sue specie. Annuario dell'Instituto e Museo di Zoologia di Napoli 2:1–11Google Scholar
  52. Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25(7):1253–1256CrossRefPubMedPubMedCentralGoogle Scholar
  53. Posada D, Buckley TR (2004) Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Syst Biol 53(5):793–808CrossRefPubMedPubMedCentralGoogle Scholar
  54. Purschke G (1990) Comparative electron microscopy investigation of the nuchal organs in Protodriloides, Protodrilus and Saccocirrus (Annelida, Polychaeta). Can J Zool 68:325–338CrossRefGoogle Scholar
  55. Purschke G (1992) Ultrastructural investigations of presumed photoreceptive organs in two Saccocirrus species (Polychaeta, Saccocirridae). J Morphol 211:7–21CrossRefGoogle Scholar
  56. Purschke G, Jouin C (1988) Anatomy and ultrastructure of the ventral pharyngeal organs of Saccocirrus (Saccocirridae) and Protodriloides (Protodriloidae fam. n.) with remarks on the phylogenetic relationships within Protodrilida (Annelida: Polychaeta). J Zool 215:405–432CrossRefGoogle Scholar
  57. Ramey-Balcı P, Fiege D, Struck TH (2018) Molecular phylogeny, morphology, and distribution of Polygordius (Polychaeta: Polygordiidae) in the Atlantic and Mediterranean. Mol Phylogenet Evol 127:919–993CrossRefPubMedPubMedCentralGoogle Scholar
  58. Repiachoff W (1881) Zur Entwicklungsgeschichte des Polygordius flavocapitatus Ulj. und Saccocirrus papillocercus Bobr. Zool Anz 4:518–520Google Scholar
  59. Riera R, Monterroso Ó, Núñez J, Martínez A (2017) Distribution of meiofaunal abundances in a marine cave complex with secondary openings and freshwater filtrations. Mar Biodivers 48:203–215CrossRefGoogle Scholar
  60. Rodríguez A, Hernández JC, Clemente S, Coppard SE (2013) A new species of Diadema (Echinodermata: Echinoidea: Diadematidae) from the eastern Atlantic Ocean and a neotype designation of Diadema antillarum (Philippi, 1845). Zootaxa 3636:144–170CrossRefGoogle Scholar
  61. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12):1572–1574CrossRefPubMedPubMedCentralGoogle Scholar
  62. Rouse GW, Pleijel F (2001) Polychaetes. Oxford University Press, OxfordGoogle Scholar
  63. Salensky W (1907) Morphogenetische Studien an Würmern. II. Über den Bau der Archianneliden nebst Bemerkungen über den Bau einiger Organe des Saccocirrus papillocercus Bobr. III. Über die Metamorphose des Polygordius. IV. Zur Theorie des Mesoderm. Mem Pres Acad Imp Sci St Petersb 19:103–451Google Scholar
  64. San Martin G (1987) Presencia en las costas Espanolas de la familia Saccocirridae (Polychaeta) y descripcion de Saccocirrus papillocercus Bobretzky, 1871. Thalassas 5:103–104Google Scholar
  65. Sánchez N, Yamasaki H, Pardos F, Sørensen M, Martínez A (2016) Morphology disentangles the systematics of a ubiquitous but elusive meiofaunal group (Kinorhyncha: Pycnophyidae). Cladistics 32:479–505CrossRefGoogle Scholar
  66. Sasaki S-I, Brown R (1983) Larval development of Saccocirrus uchidai Hokkaido, Japan, and Saccocirrus krusadensis from New South Wales, Australia (Archiannelida, Saccocirridae). Annot Zool Jpn 56:299–314Google Scholar
  67. Silva CF, Seixas VC, Barroso R, Di Domenico M, Amaral AC, Paiva PC (2017) Demystifying the Capitella capitata complex (Annelida, Capitellidae) diversity by morphological and molecular data along the Brazilian coast. PLoS One 12(5):e0177760CrossRefGoogle Scholar
  68. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21):2688–2690CrossRefGoogle Scholar
  69. Struck TH, Golombek A, Weigert A, Franke FA, Westheide W, Purschke G, Bleidorn C, Halanych KM (2015) The evolution of annelids reveals two adaptive routes to the interstitial realm. Curr Biol 25(15):1993–1999CrossRefGoogle Scholar
  70. Struck TH, Koczula J, Stateczny D et al (2017) Two new species in the annelid genus Stygocapitella (Orbiniida, Parergodrilidae) with comments on their biogeography. Zootaxa 4286:301–332CrossRefGoogle Scholar
  71. Surugiu V (2006). New data on polychaeta fauna from the Romanian coast of the Black Sea. Lucrările Conferinţei Naţionale Biodiversitate şi impact antropic în Marea Neagră şi în ecosistemele litorale ale Mării Negre, Universitatea “Al.I. Cuza”, Iasi, pp. 47-55Google Scholar
  72. Villora-Moreno S (1997) Environmental heterogeneity and the biodiversity of interstitial polychaeta. Bull Mar Sci 60:494–501Google Scholar
  73. Villora-Moreno S, Capaccioni-Azzati R, Garcia-Carrascosa AM (1991) Meiobenthos of sandy beaches from the Gulf of Valencia (Western Mediterranean): ecology of interstitial polychaetes. Bull Mar Sci 48:376–385Google Scholar
  74. Vonk R, Sánchez E (1991) A new marine interstitial ingolfiellid (Crustacea, Amphipoda, Ingolfiellidea) from Tenerife and Hierro. Hydrobiologia 223:293–299CrossRefGoogle Scholar
  75. Westheide W (1972) Nouvelles recoltes d’annelides interstitielles dans les plages sableuses du bassin d’Arcachon. Vie et Milieu 23:365–370Google Scholar
  76. Westheide W (1987) Progenesis as a principle in meiofauna evolution. J Nat Hist 21(4):843–854CrossRefGoogle Scholar
  77. Westheide, W., 2008. Polychaetes: interstitial families ; keys and notes for the identification of the species. 2nd ed Shrewsbury: Field Studies Council. 169ppGoogle Scholar
  78. Worsaae K, Giribet G, Martinez A (2018) The role of progenesis in the diversification of the interstitial annelid lineage Psammodrilidae. Invertebr Syst 32(4):774–793CrossRefGoogle Scholar
  79. Worsaae K, Gonzalez BC, Kerbl A, Nielsen SH, Jørgensen JT, Armenteros M, Iliffe TM, Martinez A (2019) Diversity and evolution of the stygobitic Speleonerilla nom. nov. (Nerillidae, Annelida) with description of three new species from anchialine caves in the Caribbean and Lanzarote. Mar Biodivers 49(5).  https://doi.org/10.1007/s12526-018-0906-5

Copyright information

© Senckenberg Gesellschaft für Naturforschung 2019

Authors and Affiliations

  1. 1.Center for Marine StudiesFederal University of Paraná, BrazilParanaBrazil
  2. 2.Italian National Research CouncilInstitute for Water ResearchVerbaniaItaly
  3. 3.Marine Biological Section, Department of BiologyUniversity of CopenhagenCopenhagen ØDenmark

Personalised recommendations