Advertisement

Xylocythere sarrazinae, a new cytherurid ostracod (Crustacea) from a hydrothermal vent field on the Juan de Fuca Ridge, northeast Pacific Ocean, and its phylogenetic position within Cytheroidea

  • Hayato TanakaEmail author
  • Yann Lelièvre
  • Moriaki Yasuhara
Original Paper

Abstract

This paper described Xylocythere sarrazinae sp. nov. (Ostracoda: Cytheroidea: Cytheruridae: Eucytherurinae), collected at 2196 m depth from the Grotto hydrothermal edifice (Main Endeavor Field, Juan de Fuca Ridge) in the northeastern Pacific Ocean. This new species was found living in association with Ridgeia piscesae tubeworm assemblages. It is the second representative of Xylocythere described from such vents. Xylocythere sarrazinae sp. nov. is easily distinguished from the seven described species of Xylocythere by the surface ornamentations of its carapace, with the most similar species to it being Xylocythere pointillissima Maddocks & Steineck, 1987. However, Xylocythere sarrazinae sp. nov can be distinguished from X. pointillissima based on the following characters: having a subsquare basal capsule outline, a spatulate upper ramus, a flattened distal lobe of the male copulatory organ, and having 15 maxillula branchial plate setae. We found that one specimen of this new species had multiple spherical objects associated with the internal openings of its pore clusters. These objects were quite similar in shape to that of chemoautotrophic bacteria, which were previously reported from the outer surfaces of pore clusters in other Xylocythere species. Finally, we provided a preliminary phylogenetic analysis of this new species based on 18S rRNA gene sequences to determine the phylogenetic position of the subfamily Eucytherurinae within the superfamily Cytheroidea. This analysis revealed that Xylocythere (Eucytherurinae) may be the most ancestral lineage among the Cytheruridae and identified paraphyletic relationships among the three subfamilies within Cytheruridae. This result supported certain previous studies’ conclusions based on morphology and fossil records.

Keywords

Chemosynthetic habitat Crustacea Eucytherurinae Meiofauna Pore clusters 

Notes

Acknowledgments

The authors thank the captain and crew of the R/V Thomas G. Thompson and the staff of Ocean Networks Canada and ROV’s Jason pilots during the “Ocean Networks Canada Expedition 2015: Wiring the Abyss” cruise. We thank also Kim Juniper and the government of Canada in obtaining of works permit to study in Canadian waters (XR281, 2015). We are also grateful to Thomas Day for his assistance in sample sorting and Akira Tsukagoshi for providing the research facilities for taxonomy and molecular work. This research was part of Yann Lelièvre PhD thesis supervised by Legendre, P. (Université de Montréal) as well as Mariolaine Matabos and Jozée Sarrazin (Université de Bretagne Occidentale/Ifremer).

Funding

This study was funded by the grants from the Japan Society for the Promotion of Science for Young Scientists (No. 263700) (to HT), the Research Grants Council of the Hong Kong Special Administrative Region, China (project codes: HKU 17306014, HKU 17311316) (to MY), Ifremer internal funds and a fellowship from the “Laboratoire d’Excellence” LabexMER (ANR-10-LABX-19) (to YL) and NSERC research grant to Pierre Legendre.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed by the authors.

Sampling and field studies

All necessary permits for sampling and observational field studies have been obtained by the authors from the competent authorities and are mentioned in the acknowledgements.

Data availability statement

Sequence data of Xylocythere sarrazinae sp. nov. that support the findings of this study have been deposited in GenBank with the accession codes LC380020 (https://www.ncbi.nlm.nih.gov/nuccore/LC380020.1).

References

  1. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723CrossRefGoogle Scholar
  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefGoogle Scholar
  3. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefGoogle Scholar
  4. Baird W (1845) Arrangement of the British Entomostraca, with a list of species, particularly noticing those which have as yet been discovered within the bounds of the Club. Hist Berwicksh Nat Club 2:145–158Google Scholar
  5. Baird W (1850) The natural history of the British Entomostraca. Ray Society, London, p 364CrossRefGoogle Scholar
  6. Bergue CT, Coimbra JC (2008) Late Pleistocene and Holocene bathyal ostracodes from the Santos Basin, southeastern Brazil. Palaeontographica A 285:101–144CrossRefGoogle Scholar
  7. Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552CrossRefGoogle Scholar
  8. Cavanaugh CM (1983) Symbiotic chemoautotrophic bacteria in marine invertebrates from sulphide-rich habitats. Nature 302:58–61CrossRefGoogle Scholar
  9. Cavanaugh CM, Gardiner SL, Jones ML, Jannasch HW, Waterbury JB (1981) Prokaryotic cells in the hydrothermal vent tube worm Riftia pachyptila Jones: possible chemoautotrophic symbionts. Science 213:340–342CrossRefGoogle Scholar
  10. Colalongo ML, Pasini G (1980) La ostracofauna plio-pleistocenica della sezione Vrica in Calabria (con considerazioni sul limite Neogene/Quaternario). B Soc Paleontol Ital 19:44–126Google Scholar
  11. Corrège T (1993) The relationship between water masses and benthic ostracod assemblages in the western Coral Sea, Southwest Pacific. Palaeogeogr Palaeoclimatol Palaeoecol 105:245–266CrossRefGoogle Scholar
  12. Dall’Antonia B (2003) Miocene ostracods from the Tremiti Islands and Hyblean Plateau: biostratigraphy and description of new and poorly known species. Geobis 36:27–54CrossRefGoogle Scholar
  13. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772CrossRefGoogle Scholar
  14. Degen R, Riavitz L, Gollner S, Vanreusel A, Plum C, Bright M (2012) Community study of tubeworm-associated epizooic meiobenthos from deep-sea cold seeps and hot vents. Mar Ecol Prog Ser 468:135–148CrossRefGoogle Scholar
  15. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  16. Guindon S, Gascuel O (2003) A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704CrossRefGoogle Scholar
  17. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321CrossRefGoogle Scholar
  18. van Harten D (1992) Hydrothermal vent Ostracoda and faunal association in the deep sea. Deep Sea Res Part A 39:1067–1070CrossRefGoogle Scholar
  19. van Harten D (1993) Deep sea hydrothermal vent eucytherurine Ostracoda: the enigma of the pore clusters and the paradox of the hinge. In: McKenzie KG, Jones PJ (eds) Ostracoda in the Earth and life sciences. Balkema, Rotterdam, pp 571–580Google Scholar
  20. Jones ML (1985) On the Vestimentifera, new phylum: six new species, and other taxa, from hydrothermal vents and elsewhere. Bull Biol Soc Wash 6:117–158Google Scholar
  21. Joy JA, Clark DL (1977) The distribution, ecology and systematics of the benthic Ostracoda of the Central Arctic Ocean. Micropaleontology 23:129–154CrossRefGoogle Scholar
  22. Kajiyama E (1913) On the Ostracoda of Misaki (part 3). Zoological magazine (Dobutugaku-zasshi) 25:1–6 [In Japanese]Google Scholar
  23. Karanovic I, Brandão SN (2015) Biogeography of deep-sea wood fall, cold seep and hydrothermal vent Ostracoda (Crustacea), with the description of a new family and a taxonomic key to living Cytheroidea. Deep-Sea Res II Top Stud Oceanogr 111:76–94CrossRefGoogle Scholar
  24. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780CrossRefGoogle Scholar
  25. Katoh K, Misawa K, Kuma KI, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066CrossRefGoogle Scholar
  26. Katoh K, Kuma KI, Toh H, Miyata T (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33:511–518CrossRefGoogle Scholar
  27. Kelley DS, Carbotte SM, Caress DW, Clague DA, Delaney JR, Gill JB, Hadaway H, Holden JF, Hooft EEE, Kellogg JP, Lilley MD, Stoermer M, Toomey D, Weekly R, Wilcock WSD (2012) Endeavour segment of the Juan de Fuca Ridge: one of the most remarkable places on earth. Oceanography 25:44–61CrossRefGoogle Scholar
  28. Kiel S, Goedert JL (2006) A wood-fall association from Late Eocene deep-water sediments of Washington State, USA. Palaios 21:548–556CrossRefGoogle Scholar
  29. Kornicker LS (1991) Myodocopid Ostracoda of hydrothermal vents in the eastern Pacific Ocean. Smithson Contr Zool 516:1–46Google Scholar
  30. Kornicker LS, Harrison-Nelson E (2005) Two new species of Ostracoda from hydrothermal vents of Riftia pachyptila aggregations on the East Pacific Rise (Halocypridina; Cladocopina). Zootaxa 1071:19–38CrossRefGoogle Scholar
  31. Lelièvre Y, Sarrazin J, Marticorena J, Schaal G, Day T, Legendre P, Hourdez S, Matabos M (2018) Biodiversity and trophic ecology of hydrothermal vent fauna associated with tubeworm assemblages on the Juan de Fuca Ridge. Biogeosciences 15:2629–2647CrossRefGoogle Scholar
  32. Machian-Castillo ML, Gío-Argáez FR, Escobar-Briones E (2014) Foraminíferos y ostrácodos recientes de la zona batial y abisal del sur del Golfo de México. In: Low Pfeng A, Peters Recagno EM (eds) La frontera final: el océano profundo. INECC, Mexico, pp 153–173Google Scholar
  33. Maddocks RF (2005) Three new species of podocopid Ostracoda from hydrothermal vent fields at 9°50′N on the East Pacific Rise. Micropaleontology 51:345–372CrossRefGoogle Scholar
  34. Maddocks RF, Steineck PL (1987) Ostracoda from experimental wood-island habitats in the deep sea. Micropaleontology 33:318–355CrossRefGoogle Scholar
  35. Mazzini I, Gliozzi E (2000) Occurrence of fossil and Recent Microceratina Swanson 1980 (Ostracoda, Eucytherurinae) in the Mediterranean. Micropaleontology 46:143–152CrossRefGoogle Scholar
  36. Moon-van der Staay SY, van der Staay GWM, Guillou L, Vaulot D, Claustre H, Medlin LK (2000) Abundance and diversity of prymnesiophytes in the picoplankton community from the equatorial Pacific Ocean inferred from 18S rDNA sequences. Limnol Oceanogr 45:98–109CrossRefGoogle Scholar
  37. Müller GW (1894) Die Ostracoden des Golfes von Neapel und der angrenzenden Meeres-Abschnitte. Fauna Flora Golf Neapel 21:1–404Google Scholar
  38. Nylander JAA (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, UppsalaGoogle Scholar
  39. Olempska E, Belka Z (2010) Hydrothermal vent myodocopid ostracods from the Eifelian (Middle Devonian) of southern Morocco. Geobis 43:519–529CrossRefGoogle Scholar
  40. Puri HS (1974) Normal pores and the phylogeny of Ostracoda. Geosci Man 6:137–151Google Scholar
  41. Rambaut A, Suchard MA, Xie MA, Drummond AJ (2014) Tracer v1.6. Available from: http://beast.bio.ed.ac.uk/Tracer [Accessed on 12 Feb 2018]
  42. Ramdohr AF (1808) Über die Gattung Cypris Müller und drei zu derselben gehörige neue Arten. Mag Ges Naturforsch Freunde Berl Neusten Entdeck Ges Naturkd 2:85–93Google Scholar
  43. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574CrossRefGoogle Scholar
  44. Sarrazin J, Juniper K (1999) Biological characteristics of a hydrothermal edifice mosaic community. Mar Ecol Prog Ser 185:1–19CrossRefGoogle Scholar
  45. Sarrazin J, Robigou V, Juniper K, Delaney JR (1997) Biological and geological dynamics over four years on a high-temperature sulfide structure at the Juan de Fuca Ridge hydrothermal observatory. Mar Ecol Prog Ser 153:5–24CrossRefGoogle Scholar
  46. Sars GO (1866) Oversigt af Norges marine Ostracoder. Forhandlinger i Videnskabs-Selskabet Christiania 8:1–130Google Scholar
  47. Schornikov EI (1974) Study of ostracods (Curustacea) from the intertidal zone of the Kurile Islands. Flora and Fauna in the intertidal zone of Kurile Islands. Inst Biol Morja Dal'nevost naucn Centr AN SSSR Sborn Rabot p 5–74 [In Russian]Google Scholar
  48. Steineck PL, Maddocks RF, Coles G, Whatley RC (1990) Xylophile Ostracoda in the deep sea. In: Whatley R, Maybury C (eds) Ostracoda and global events. British Micropaleontological Society Publication Series, Chapman and Hall, London, pp 307–319CrossRefGoogle Scholar
  49. Szczechura J (1995) The ostracode genus Xylocythere Maddocks and Steineck, 1987, from the Middle Miocene of the Fore-Carpathian Depression, southern Poland (Central Paratethys), and its biogeographic significance. Acta Geol Pol 45:27–40Google Scholar
  50. Szczechura J (2000) Age and evolution of depositional environments of the supra-evaporitic deposits in the northern, marginal part of the Carpathian Foredeep: micropalaeontologica1 evidence. Geol Quart 44:81–100Google Scholar
  51. Tanaka H, Ohtsuka S (2016) Historical biogeography of the genus Polycopissa (Ostracoda: Myodocopa: Cladocopina), with the description and DNA barcode of the second Indo-Pacific species from the Seto Inland Sea. Mar Biodivers 46:625–640CrossRefGoogle Scholar
  52. Tanaka H, Yasuhara M (2016) A new deep-sea hydrothermal vent species of Ostracoda (Crustacea) from the Western Pacific: implications for adaptation, endemism, and dispersal of ostracodes in chemosynthetic systems. Zool Sci 33:555–565CrossRefGoogle Scholar
  53. Van Dover CL (2002) Community structure of mussel beds at deep-sea hydrothermal vents. Mar Ecol Prog Ser 230:137–158CrossRefGoogle Scholar
  54. Whatley R, Boomer I (2000) Systematic review and evolution of the early Cytheruridae (Ostracoda). J Micropalaeontol 19:139–151CrossRefGoogle Scholar
  55. Xu G, Jackson DR, Bemis KG, Rona PA (2014) Time-series measurement of hydrothermal heat flux at the Grotto mound, Endeavour Segment, Juan de Fuca Ridge. Earth Planet Sci Lett 404:220–231CrossRefGoogle Scholar
  56. Yamada S, Tanaka H (2011) First report of an interstitial Semicytherura (Crustacea: Ostracoda: Cytheruridae: Cytherurinae): a new species from Central Japan. Spec Div 16:49–63CrossRefGoogle Scholar
  57. Yamaguchi S (2003) Morphological evolution of cytherocopine ostracods inferred from 18S ribosomal DNA sequences. J Crustac Biol 23:131–153CrossRefGoogle Scholar
  58. Yasuhara M, Okahashi H, Cronin TM (2009) Taxonomy of Quaternary deep-sea ostracods from the western North Atlantic Ocean. Palaeontology 52:879–931CrossRefGoogle Scholar
  59. Zeppilli D, Danovaro R (2009) Meiofaunal diversity and assemblage structure in a shallow-water hydrothermal vent in the Pacific Ocean. Aquat Biol 5:75–84CrossRefGoogle Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung 2019

Authors and Affiliations

  1. 1.Tokyo Sea Life ParkTokyoJapan
  2. 2.Ifremer Centre de Bretagne, REM/EEP, Laboratoire Environnement ProfondPlouzaneFrance
  3. 3.Département de Sciences BiologiquesUniversité de MontréalMontrealCanada
  4. 4.School of Biological Sciences and Swire Institute of Marine ScienceThe University of Hong KongHong KongChina

Personalised recommendations