First record of a symbiotic relationship between a polyclad and a black coral with description of Anthoplana antipathellae gen. et sp. nov. (Acotylea, Notoplanidae)

  • Marzia BoEmail author
  • Giorgio Bavestrello
  • Giorgia Di Muzio
  • Simonepietro Canese
  • Federico Betti
Original Paper


The close relationship between a polyclad (Platyhelminthes, Rhabditophora, Polycladida) and the mesophotic Atlantic–Mediterranean black coral Antipathella subpinnata (Ellis & Solander, 1786) (Cnidaria, Hexacorallia, Antipatharia) is herein described for the first time. Worms, up to 50 mm long, are elongated with sparse dorsal papillae, an anterior, ruffled pharynx and caudal, well-separated gonopores. The bulbous vagina is connected to a very elongated Lang’s vesicle, while the male apparatus, hosting a cuticular penis papilla, consists in a muscular interpolated prostatic vesicle, formed by few chambers surrounding the ejaculatory duct, a major seminal vesicle and numerous spermiducal bulbs. These features, as well as the uniqueness of the symbiotic relationship and relative reproductive adaptations, support the description of a new taxon, Anthoplana antipathellae gen. et sp. nov. (Acotylea, Notoplanidae). The observed symbiosis is ascribable to exclusive inquilinism with some parasitic traits. The individuals, living in large numbers on the colonies, are highly cryptic thanks to a characteristic pigmentation and a wrapped habitus. They lay numerous annular yellow cocoons (rigid, nest-like structures containing the fertilised eggs), in single or multiple rows on the distal branches of the coral, temporarily denudated of coenenchyme. The occurrence of the polyclad is consistent with the Atlantic–Mediterranean geographical and bathymetrical distribution of the A. subpinnata forests as demonstrated by the analysed photo archive, and a summer reproductive peak can be hypothesised based on the temporal observations carried out in the study areas.


Antipatharia Flatworm New species Association Mesophotic zone 



The authors would like to thank the crew of R/V Astrea, Guido Gay (AzioneMare) and Centro Carabinieri Subacquei Genova Voltri for their help during fieldworks. The authors would also like to thank the Smithsonian National Museum of Natural History (Dennis Opresko and Jeoff Keel), Francesco Enrichetti, Martina Coppari, Michela Giusti and Michela Angiolillo for specimen loan and helping in the collection and fixation of specimens. We are indebted to Dr. Leslie Newman for her kindness, support and suggestions when we firstly approached this description many years ago.


The study was partially funded by BIOMOUNT project MIUR-SIR (RBSI14HC9O, Biodiversity patterns of the Tyrrhenian Seamounts).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed by the authors.

Sampling and field studies

All necessary permits for sampling and observational field studies have been obtained by the authors from the competent authorities.

Data availability

All data generated or analysed during this study are included in this published article.


  1. Agassiz L (1862) Contributions to the natural history of the United States of America. Little Brown Boston, 4:1-380Google Scholar
  2. Aguado MT, Noreña C, Alcaraz L, Marquina D, Brusa F, Damborenea C, Almon B, Bleidorn C, Grande C (2017) Phylogeny of Polycladida (Platyhelminthes) based on mtDNA data. Org Divers Evol 17:767–778CrossRefGoogle Scholar
  3. Baeza JA, Veliz D, Pardo LM, Lohrmann K, Guisado C (1997) A new polyclad flatworm, Tytthosoceros inca (Platyhelminthes: Polycladida: Cotylea: Pseudocerotidae) from Chilean coastal waters. P Biol Soc Wash 110:476–482Google Scholar
  4. Bahia Maceira J (2017) Polycladida biodiversity and systematics: an integrative approach. Dissertation, University of MunichGoogle Scholar
  5. Bahia J, Padula V, Schrödl M (2017) Polycladida phylogeny and evolution: integrating evidence from 28S rDNA and morphology. Org Divers Evol 17:653–678CrossRefGoogle Scholar
  6. Bo M, Barucca M, Biscotti MA, Canapa A, Lapian HFN, Olmo E, Bavestrello G (2009a) Description of Pseudocirrhipathes (Cnidaria: Anthozoa: Hexacorallia: Antipathidae), a new genus of whip black corals from the Indo-Pacific. Ital J Zool 76:392–402Google Scholar
  7. Bo M, Bavestrello G, Canese S, Giusti M, Salvati E, Angiolillo M, Greco S (2009b) Characteristics of a black coral meadow in the twilight zone of the central Mediterranean Sea. Mar Ecol Prog Ser 397:53–61Google Scholar
  8. Bo M, Canese S, Bavestrello G (2019b) On the coral-feeding habit of the sea star Peltaster placenta. Mar Biodivers 49(4):2009–2012Google Scholar
  9. Bo M, Di Camillo CG, Puce S, Canese S, Giusti M, Angiolillo M, Bavestrello G (2011) A tubulariid hydroid associated with anthozoan corals in the Mediterranean Sea. Ital J Zool 78:487–496CrossRefGoogle Scholar
  10. Bo M, Lavorato A, Di Camillo CG, Poliseno A, Baquero A, Bavestrello G, Irei Y, Reimer JD (2012) Black coral assemblages from Machalilla National Park (Ecuador). Pac Sci 66:63–81CrossRefGoogle Scholar
  11. Bo M, Montgomery T, Opresko DM, Wagner D, Bavestrello G (2019a) Mesophotic antipatharian fauna. In: Loya Y, Puglise K, Bridge T (eds) Mesophotic coral ecosystems (MCEs). What are the similarities and differences between MCEs and shallow reefs. Springer International Publishing, Basel, pp 681–705Google Scholar
  12. Bock S (1913) Studien über Polycladen. Zool Bidr Upps 2:31–344Google Scholar
  13. Bock S (1922) Two new cotylean polyclads from Japan. Arkiv för Zoology 14:1–31Google Scholar
  14. Bock S (1926) Eine Polyclade mit muskuloesen Druesenorganen rings um den Koerper. Zool Anz 66:133-138Google Scholar
  15. Branch GM, Branch M (1981) The living shores of southern Africa. Struik Publishers, Cape TownGoogle Scholar
  16. Cannon LRG (1990) Apidioplana apluda, new species, a turbellarian symbiote of gorgonian corals from the Great Barrier Reef, with a review of the family Apidioplanidae (Polycladida: Acotylea). Mem Queensl Mus 28:435–442Google Scholar
  17. Cannon LRG, Francis S (1986) Turbellaria of the world: a guide to families & genera. Queensland Museum, pp.136Google Scholar
  18. Cannon LRG, Grygier MJ (1991) The turbellarian Notoplana comes n. sp. (Leptoplanidae: Acotylea: Polycladida) found with the intertidal brittlestar Ophiocoma scolopendrina (Ophiocomidae: Ophiuroidea) in Okinawa, Japan. Galaxea 10:23–33Google Scholar
  19. Coppari M, Mestice F, Betti F, Bavestrello G, Castellano L, Bo M (2019) Fragmentation, re-attachment ability and growth rate of the Mediterranean black coral Antipathella subpinnata. Coral Reefs 38:1–14Google Scholar
  20. Carlton JT (2009) Deep invasion ecology and the assembly of communities in historical time. In: Rilov G, Crooks JA (eds) Biological invasions in marine ecosystems. Springer, Berlin, pp 13–56CrossRefGoogle Scholar
  21. Carlton JT, Eldredge LG (2009) Marine bioinvasions of Hawaii. The introduced and cryptogenic marine and estuarine animals and plants of the Hawaiian archipelago. Bishop Mus Bull Cult Environ Stud 4:1–20Google Scholar
  22. Christensen AM, Kanneworff B (1965) Life history and biology of Kronborgia amphipodicola Christensen & Kanneworff (Turbellaria, Neorhabdocoela). Ophelia 2:237–251CrossRefGoogle Scholar
  23. Crozier WJ (1917) On the pigmentation of a Polyclad. Proc Am Acad Arts Sci 50:725–730CrossRefGoogle Scholar
  24. de Matos V, Gomes-Pereira JN, Tempera F, Ribeiro PA, Braga-Henriques A, Porteiro F (2014) First record of Antipathella subpinnata (Anthozoa, Antipatharia) in the Azores (NE Atlantic), with description of the first monotypic garden for this species. Deep Sea Res Part 2 Top Stud Oceanogr 99:113–121CrossRefGoogle Scholar
  25. de Quatrefages A (1845) Études sur les types inférieurs de l'embranchement des annelés: mémoire sur quelques planairées marines appartenant aux genres Tricelis (Ehr.), Polycelis (Ehr.), Prosthiostomum (Nob.), Proceros (Nob.), Eolidiceros (Nob.), et Stylochus (Ehr). Ann Sci Nat 4:129–184Google Scholar
  26. Deheyn D, Eeckhaut I, Moens J (1998) A new species of polyclad (Platyhelminthes), endosymbiont of the ophiuroid Ophiothrix purpurea. In: Mooi R, Telford M, Balkema AA (eds) Echinoderms: San Francisco, proceedings of the ninth international echinoderm conference. Rotterdam, pp 347–350Google Scholar
  27. Delle Chiaje S (1822) Memorie sulla storia e notomia degli animali senza vertebre del Regno di Napoli. Stamperia de’ Fratelli Fernandes, NapoliGoogle Scholar
  28. Doignon G, Artois T, Deheyn D (2003) Discoplana malagasensis sp. nov., a new turbellarian (Platyhelminthes: Polycladida: Leptoplanidae) symbiotic in an ophiuroid (Echinodermata), with a cladistic analysis of the Discoplana/Euplana species. Zool Sci 20:357–369CrossRefGoogle Scholar
  29. Domenici L, Galleni L, Gremigni V (1975) Electron microscopical and cytochemical study of egg-shell globules in Notoplana alcinoi (Turbellaria, Polycladida). J Submicrosc Cytol 7:239–247Google Scholar
  30. Ellis J, Solander D (1786) The natural history of many curious and uncommon zoophytes, collected from various parts of the globe. Systematically arranged and described by the late Daniel Solander. Benjamin White & Son, LondonGoogle Scholar
  31. Faubel A (1983) The Polycladida, Turbellaria; proposal and establishment of a new system. Part I. The Acotylea. Mitt Hamb Zool Mus Inst 80:17–121Google Scholar
  32. Faubel A (1984) The Polycladida, Turbellaria. Proposal and establishment of a new system. Part II. The Cotylea. Mitt Hamb Zool Mus Inst 81:189–259Google Scholar
  33. Faubel A, Sluys R, Reid DG (2007) A new genus and species of polyclad flatworm found in the mantle cavities of gastropod molluscs in the high-intertidal zone of the Pacific coast of Central America. J Mar Biol Assoc UK 87:429–434CrossRefGoogle Scholar
  34. Gaino E, Bavestrello G, Boyer M, Scoccia F, Bo M (2013) Biological and ecological relevance of black corals (Antipatharia) in the benthic environment. In: Liñán-Cabello MA (ed) Corals: classification, habitat and ecological significance. Nova Science Publishers, Hauppauge, pp 37–74Google Scholar
  35. Galleni L (1972) Polycladida Acotylea delle coste toscane. B Zool 39:621Google Scholar
  36. Galleni L (1974) Policladi delle coste Toscane 1. Notoplana igiliensis n. sp. nuovo Leptoplanide (Polycladida Acotylea) dell'Isola del Giglio (1). Cah Biol Mar 15:395–402Google Scholar
  37. Galleni L, Gremigni V (1989) Platyhelminthes-Turbellaria. In: Adiyodi KG, Adiyodi RG (eds) Reproductive biology of invertebrates Vol IV Part A. Fertilization, development and parental care. Wiley, New York, pp 63–89Google Scholar
  38. Galleni L, Tongiorgi P, Ferrero E, Salghetti U (1980)Stylochus mediterraneus (Turbellaria, Polycladida) predator on the mussel Mytilus galloprovincialis. Mar Biol 55:317–326CrossRefGoogle Scholar
  39. Gammoudi M, Ben Ahmed R, Ahmed M, Sayed SR, Alwasel SH, Tekaya S, Harrath AH (2016a) Ultrastructural study of oogenesis in the acotylean Echinoplana celerrima, (Platyhelminthes, Polycladida). Zool Anz 260:72–77CrossRefGoogle Scholar
  40. Gammoudi M, Ben Ahmed R, Bouriga N, Ben-Attia M, Harrath AH (2016b) Predation by the polyclad flatworm Imogine mediterranea on the cultivated mussel Mytilus galloprovincialis in Bizerta Lagoon (northern Tunisia). Aquac Res 48:1608–1617CrossRefGoogle Scholar
  41. Gammoudi M, Ben Rached B, Tekaya S (2011) Les polyclades (plathelminthes de vie libre) du nord de la Tunisie: inventaire et distribution. Bull Inst Natn Scienc Tech Mer de Salammbô 38:83–88Google Scholar
  42. Gammoudi M, Egger B, Tekaya S, Norena C (2012) The genus Leptoplana (Leptoplanidae, Polycladida) in the Mediterranean basin. Redescription of the species Leptoplana mediterranea (Bock, 1913) comb. nov. Zootaxa 3178:45–56CrossRefGoogle Scholar
  43. Gammoudi M, Tekaya S, Norena C (2009) Contribution to the knowledge of acotylean polyclads (Platyhelminthes, Polycladida) from Tunisian coasts. Zootaxa 2195:43–60CrossRefGoogle Scholar
  44. Girard C (1850) A brief account of the fresh water species of Planariae inhabiting the United States. Proc Boston Soc Nat Hist 3:264–265Google Scholar
  45. Goodheart JA, Bely AE (2017) Sequestration of nematocysts by divergent cnidarian predators: mechanism, function, and evolution. Invertebr Biol 136:75–91CrossRefGoogle Scholar
  46. Goldberg WM, Grange KR, Taylor GT, Zuniga AL (1990) The structure of sweeper tentacles in the black coral Antipathes fiordensis. Biol Bull US 179:96–104CrossRefGoogle Scholar
  47. Gremigni V, Falleni A (1998) Characters of the female gonad and the phylogeny of Platyhelminthes. Hydrobiologia 383:235–242CrossRefGoogle Scholar
  48. Grube AE (1840) Actinien, Echinodermen und Würmer des adriatischen und Mittelmeers, nach eigenen Sammlungenbeschrieben. Bon JH, KönigsbergCrossRefGoogle Scholar
  49. Handl C, Bouchet P (2007) Mystery tubes coiled around deep-water tropical gorgonians: fecampiid cocoons (Platyhelminthes: Fecampiida) resembling Solenogastres (Mollusca). Syst Parasitol 67:81–85CrossRefGoogle Scholar
  50. Hickman V, Olsen A (1955) A new turbellarian parasitic in the sea-star, Coscinasterias calamaria (Gray). Pap Proc R Soc Tasmania 89:55–63Google Scholar
  51. Holleman JJ (1998) Two new species of the genus Anonymus from New Zealand (Polycladida, Cotylea). Hydrobiologia 383:61–67CrossRefGoogle Scholar
  52. Holleman JJ (2007) Some New Zealand polyclads (platyhelminthes, polycladida). Zootaxa 1560(1):17CrossRefGoogle Scholar
  53. Huggins LG, Waite JH (1993) Eggshell formation in Bdelloura candida, an ectoparasitic turbellarian of the horseshoe crab Limulus polyphemus. J Exp Zool 265:549–557CrossRefGoogle Scholar
  54. Hume BC, D’Angelo C, Cunnington A, Smith EG, Wiedenmann J (2014) The corallivorous flatworm Amakusaplana acroporae: an invasive species threat to coral reefs? Coral Reefs 33:267–272CrossRefGoogle Scholar
  55. Hyman LH (1944) A new Hawaiian polyclad flatworm associated with Teredo. Occas Pap Bernice P Bishop Mus 18:73–75Google Scholar
  56. Hyman LH (1955) The polyclad flatworms of the Pacific coast of North America: additions and corrections. Am Mus Novit 1704:1–11Google Scholar
  57. Hyman LH (1959) A further study of Micronesian polyclad flatworms. Proc US Nat Mus 108:543–547CrossRefGoogle Scholar
  58. Ishida S, Teshirogi W (1986) Eggshell formation in polyclads (Turbellaria). Hydrobiologia 132:127–135CrossRefGoogle Scholar
  59. Jangoux M (1990) Diseases of Echinodermata. In: Kinne O (ed) Diseases of marine animals, III edn. Biologishe Anstalt Helgoland, Hamburg, pp 439–567Google Scholar
  60. Jennings JB (1971) Parasitism and commensalism in the Turbellaria. In: Dawes B (ed) Advances in parasitology, vol IX. Academic, Cambridge, pp 1–32Google Scholar
  61. Jie WB, Kuo SC, Wu SC, Lee KS (2013) Unreported predatory behavior on crustaceans by Ilyella gigas (Schmarda, 1859) (Polycladida: Ilyplanidae), a newly-recorded flatworm from Taiwan. Platax 10:57–71Google Scholar
  62. Jokiel PL, Townsley SJ (1974) Biology of the polyclad Prosthiostomum (Prosthiostomum) sp., a new coral parasite from Hawaii. Pac Sci 28:361–373Google Scholar
  63. Karling TG (1966) On nematocysts and similar structures in turbellarians. Acta Zool Fenn 116:1–28Google Scholar
  64. Kato K (1933) On Stylochoplana pusilla Bock. Doubutsugaku Zasshi 45:487–490Google Scholar
  65. Kato K (1935a) Discoplana takewaii sp. nov., a polyclad parasitic in the genital bursa of the ophiuran. Annot Zool Jpn 15:149–157Google Scholar
  66. Kato K (1935b) Stylochoplana parasitica sp. nov., a polyclad parasitic in the pallial groove of the chiton. Annot Zool Jpn 15:123–127Google Scholar
  67. Laidlaw FF (1903) On a collection of Turbellaria Polycladida from the Straits of Malacca. (Skeat Expedition 1899-1900). Proc Zool Soc London 1903:301–318Google Scholar
  68. Lang A (1884) Die Polycladen (Seeplanarien) des Golfes von Neapel und der angrenzenden Meeresabschnitte. Eine Monographie. Fauna Flora Golfes v. Neapel 11, Engelmann, LeipzigGoogle Scholar
  69. Lee KM, Beal MA, Johnston EL (2006) A new predatory flatworm (Platyhelminthes, Polycladida) from Botany Bay, New South Wales, Australia. J Nat Hist 39:3987–3995CrossRefGoogle Scholar
  70. Litvaitis MK, Bolaños DM, Quiroga SY (2019) Systematic congruence in Polycladida (Platyhelminthes, Rhabditophora): are DNA and morphology telling the same story? Zool J Linnean Soc 186(4):865–891Google Scholar
  71. Love MS, Yoklavich MM, Black BA, Andrews AH (2007) Age of black coral (Antipathes dendrochristos) colonies, with notes on associated invertebrate species. B Mar Sci 80:391–399Google Scholar
  72. Lytwyn MW, McDermott JJ (1976) Incidence, reproduction and feeding of Stylochus zebra, a polyclad turbellarian symbiont of hermit crabs. Mar Biol 38:365–372CrossRefGoogle Scholar
  73. Marcus E, Marcus E (1966) Systematische Übersicht der Polycladen. Zool Beitr 21:320–343Google Scholar
  74. Marquina D, Osca D, Rodríguez J, Fernández-Despia E, Noreña C (2014) State of knowledge of the Acotylea (Polycladida, Platyhelminthes) from the Mediterranean coasts of Spain: new records and new species. Zootaxa 3780:108–134CrossRefGoogle Scholar
  75. Millar RH (1971) The biology of ascidians. In: Russell FS, Yonge M (eds) Advances in marine biology, 9th edn. Academic, New York, pp 1–100Google Scholar
  76. Molodtsova T, Budaeva N (2007) Modifications of corallum morphology in black corals as an effect of associated fauna. B Mar Sci 81:469–480Google Scholar
  77. Molodtsova T, Poltarukha O (2008) Cuticular spines of Oxynaspis spp. (Pedunculata: Cirripedia): An inheritance from antipatharian host. In: Proc. 4th Deepsea Coral Symp., WellingtonGoogle Scholar
  78. Newman LJ, Cannon LRG (1994)Pseudoceros and Pseudobiceros (Platyhelminthes, Polycladida, Pseudocerotidae) from eastern Australia and Papua New Guinea. Mem Queensl Mus 37:205–266Google Scholar
  79. Newman LJ, Norenburg JL, Reed S (2000) Taxonomic and biological observations on the tiger flatworm, Maritigrella crozieri (Hyman, 1939), new combination (Platyhelminthes, Polycladida, Euryleptidae) from Florida waters. J Nat Hist 34:799–808CrossRefGoogle Scholar
  80. Nosratpour F (2008) Observations of a polyclad flatworm affecting acroporid corals in captivity. In: Leewis RJ, Janse M (eds) Advances in coral husbandry in public aquariums. Public Aquarium Husbandry Series, 2. Burgers’ Zoo, Arnhem, pp 37–46Google Scholar
  81. Novell C (2001) Contribució al coneixement dels turbellaris policlàdides del litoral català. Dissertation, University of BarcelonaGoogle Scholar
  82. OCEANA (2011) OSPAR Workshop on the Improvement of the Definitions of Habitats on the Ospar List, 20–21 October 2011, Bergen, Norway. Background Document for Discussion: “Coral Gardens”, “Deep Sea Sponge Aggregations” and “Seapen and Burrowing Megafauna Communities”. Accessed 12 November 2018
  83. Opresko DM (2001) Revision of the Antipatharia (Cnidaria: Anthozoa). Part I. Establishment of a new family, Myriopathidae. Zool Med Leiden 75: 343–370Google Scholar
  84. Oya Y, Kajihara H (2017) Description of a new Notocomplana species (Platyhelminthes: Acotylea), new combination and new records of Polycladida from the northeastern Sea of Japan, with a comparison of two different barcoding markers. Zootaxa 4282:526–542Google Scholar
  85. Özdikmen H (2010) A new family and two genera names for Turbellaria (Platyhelminthes). Mun Ent Zool 5:115–117Google Scholar
  86. Pearse AS, Wharton GW (1938) The oyster “leech”, Stylochus inimicus Palombi, associated with oysters on the coasts of Florida. Ecol Monogr 8:605–655CrossRefGoogle Scholar
  87. Pérez-García P, Noreña C, Cervera JL (2018) Two new acotylean flatworms (Polycladida) of two genera unrecorded in the Eastern Atlantic. Mar Biodivers 49:1187–1195CrossRefGoogle Scholar
  88. Pérez-Portela R, Turon X (2007) Prey preferences of the polyclad flatworm Prostheceraeus roseus among Mediterranean species of the ascidian genus Pycnoclavella. Hydrobiologia 592:535–539CrossRefGoogle Scholar
  89. Plehn M (1896) Neue Polycladen, gesammelt von Herrn Kapitan Chierchia bei der Erdumschiffung der Korvett Vettor Pisani, von Herrn Prof. Dr. Kukenthal im nördlichem Eismeer und von Herrn Prof Dr. Semon in Java. Jen Zeit Naturwis 30:137–181Google Scholar
  90. Poulter JL (1975) Hawaiian polyclads: Prosthiostomids I. Pac Sci 29:317–339Google Scholar
  91. Prudhoe S (1985) A monograph on polyclad Turbellaria. British Museum of Natural History and Oxford University Press, LondonGoogle Scholar
  92. Quiroga SY, Bolaños DM, Litvaitis MK (2006) First description of deep-sea polyclad flatworms from the North Pacific: Anocellidus n. gen. profundus n. sp. (Anocelidae, n. fam.) and Oligocladus voightae n. sp. (Euryleptidae). Zootaxa 1317(1):19CrossRefGoogle Scholar
  93. Quiroga SY, Bolaños DM, Litvaitis MK (2008) Two new species of flatworms (Platyhelminthes: Polycladida) from the continental slope of the Gulf of Mexico. J Mar Biol Assoc UK 88:1363–1370CrossRefGoogle Scholar
  94. Rawlinson KA, Gillis JA, Billings RE Jr, Borneman EH (2011) Taxonomy and life history of the Acropora-eating flatworm Amakusaplana acroporae nov. sp. (Polycladida: Prosthiostomidae). Coral Reefs 30:693–705CrossRefGoogle Scholar
  95. Rawlinson KA, Marcela Bolaños DM, Liana MK, Litvaitis MK (2008) Reproduction, development and parental care in two direct-developing flatworms (Platyhelminthes: Polycladida: Acotylea). J Nat Hist 42:2173–2192CrossRefGoogle Scholar
  96. Rawlinson KA, Stella JS (2012) Discovery of the corallivorous polyclad flatworm, Amakusaplana acroporae, on the Great Barrier Reef, Australia—the first report from the wild. PLoS One 7:e42240CrossRefGoogle Scholar
  97. Riser NW (1970) Biological studies on Taenioplana teredini Hyman 1944. Am Zool 10:553Google Scholar
  98. Riser NW (1974) Epilogue. In: Riser NW, Morse MP (eds) Biology of the Turbellaria. McGraw-Hill, New York, pp 517–524Google Scholar
  99. Rodríguez J, Grande C, Bulnes NV, Almon B, Perez J, Noreña C (2017) Systematic revision of the family Pleioplanidae Faubel, 1983 (Polycladida, Acotylea): new genus and combinations. Eur J Tax 264:1–30Google Scholar
  100. Schlechter V (1943) Two flatworms from the oyster-drilling snail Thais floridanahaysae Clench. J Parasitol 29:362CrossRefGoogle Scholar
  101. Shinn GL (1993) Formation of egg capsules by flatworms (phylum Platyhelminthes). T Am Microsc Soc 112:18–34CrossRefGoogle Scholar
  102. Stimpson W (1857) Prodromus descriptionis animalium evertebratorum quae in expeditione ad oceanum, pacificum septentrionalem a Republica Federata missa, Turbellaria Dendrocoela. Proc Ac Nat Sci Philadelphia, 9:19–31Google Scholar
  103. Tazioli S, Bo M, Boyer M, Rotinsulu H, Bavestrello G (2007) Ecological observations of some common antipatharian corals in the marine park of Bunaken (North Sulawesi, Indonesia). Zool Stud 46:227–241Google Scholar
  104. Tekaya S, Sluys R, Zghal F (1999) Cocoon production, deposition, hatching and embryonic development in the marine planarian Sabussowia dioica (Platyhelminthes, Tricladida, Maricola). Invertebr Reprod Dev 35:215–223CrossRefGoogle Scholar
  105. von Graff L (1892) Pelagische Polycladen. Z Wiss Zool 55:189–220Google Scholar
  106. Velasquez X, Bolaños DM, Benayahu Y (2018) New records of cotylean flatworms (Platyhelminthes: Polycladida: Rhabditophora) from coastal habitats of Israel. Zootaxa 4438:237–260CrossRefGoogle Scholar
  107. Wagner D, Luck DG, Toonen RJ (2012) The biology and ecology of black corals (Cnidaria: Anthozoa: Hexacorallia: Antipatharia). Adv Mar Biol 63:67–132CrossRefGoogle Scholar
  108. Wheeler WM (1894) Planocera inquilina, a polyclad inhabiting the branchial chamber of Sycotypus canaliculatus, Gill. J Morphol 9:195–201CrossRefGoogle Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung 2019

Authors and Affiliations

  1. 1.Dipartimento di Scienze della Terra, dell’Ambiente e della VitaUniversità degli Studi di GenovaGenoaItaly
  2. 2.Dipartimento di Scienze della Vita e Biologia dei SistemiUniversità degli Studi di TorinoTurinItaly
  3. 3.Istituto Superiore per la Protezione e la Ricerca AmbientaleRomeItaly

Personalised recommendations