Marine Biodiversity

, Volume 49, Issue 5, pp 2429–2443 | Cite as

Biodiversity of cephalopod early-life stages across the Southeastern Brazilian Bight: spatio-temporal patterns in taxonomic richness

  • Carolina C. AraújoEmail author
  • Maria A. Gasalla
Original Paper


The diversity patterns of cephalopod early-life stages on the continental shelf of Southeastern Brazilian Bight (SBB, 22–25°S) were investigated using a historical plankton archive of 22 oceanographic cruises carried out from 1974 to 2010. From 874 plankton samples, 438 were positive for cephalopod paralarvae (n = 2116), which were identified to the lowest taxonomic level possible, totaling 15 taxa belonging to 11 families. Richness and diversity indexes (Shannon-Wiener, Simpson, Pielou’s evenness) revealed a cross-shelf gradient, independent of season and latitude. Abundance k-dominance curves were consistent with this depth-related trend, resulting in high values of k-dominance for the inner shelf during both summer and winter. Two major assemblages were identified by cluster analyses: an inner shelf and a mid-outer shelf. During summer, the inner shelf assemblage was composed of neritic Loliginidae Lesueur, 1821 and epipelagic Argonautidae Tryon, 1879, while in winter, benthic Octopodidae Orbigny, 1840 replaced Argonautidae in importance. These data reveal a remarkable difference in Argonautidae and Octopodidae paralarvae abundance, suggesting a seasonal reproductive pattern for these cephalopods in the SBB. Mesopelagic Enoploteuthidae Pfeffer, 1900 and Ommastrephidae Steenstrup, 1857 characterized the mid-outer shelf assemblages both in summer and winter. Although based on a higher taxonomic level, the distribution of cephalopod paralarva families reflected not only oceanographic patterns of the SBB but also their adaptations and reproductive strategies. In particular, the cross-shelf gradient in cephalopod biodiversity reflects a more dynamic oceanographic conditions in inner shelf compared with mid-outer shelf ecosystems.


Diversity Paralarvae Continental shelf Squid Octopus 



The authors are grateful to the responsible for the Biological Collection “Prof. E. F. Nonato” – ColBIO, Oceanographic Institute, University of São Paulo, for the plankton samples. We are also thankful to the Graduate Program on Oceanography from the University of São Paulo.


This study was financed in part by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – CAPES/PROEX.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed by the authors.

Sampling and field studies

All necessary permits for sampling and observational field studies have been obtained by the authors from the competent authorities and are mentioned in the acknowledgements, if applicable.

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

Supplementary material

12526_2019_980_MOESM1_ESM.pdf (260 kb)
ESM 1 (PDF 259 kb)


  1. Aidar E, Gaeta SA, Gianesella-Galvão SMF, Kutner MBB, Teixeira C (1993) Ecossistema costeiro tropical: nutrientes dissolvidos, fitoplâncton e clorofila-a, e suas relações com as condições oceanográficas na região de Ubatuba. Publ Esp Inst Oceanogr 10:9–43Google Scholar
  2. Anderson CIH, Rodhouse PG (2001) Life cycles, oceanography and variability: ommastrephid squid in variable oceanographic environments. Fish Res 54:133–143Google Scholar
  3. Araújo CC, Gasalla MA (2018) Distribution patterns of loliginid squid paralarvae in relation to the oceanographic features off the South Brazil Bight (22°–25°S). Fish Oceanogr 27:63–67Google Scholar
  4. Arkhipkin AI, Rodhouse PGK, Pierce GJ et al (2015) World squid fisheries. Rev Fish Sci Aquacult 23:92–252Google Scholar
  5. Bather FA (1888) Shell-growth in Cephalopoda (Siphonopoda). Ann Mag Nat Hist 6:289–310Google Scholar
  6. Berry SS (1912) A review of the cephalopods of western North America. Bull Bur Fish Wash 30:263–336Google Scholar
  7. Boettger CB (1952) Die Stämme des Tierreichs in ihrer systematischen Gliederung. Abh Braunschweig Wiss Ges 4:238–300Google Scholar
  8. Boyle PR (1990) Cephalopod biology in the fisheries context. Fish Res 8:303–321Google Scholar
  9. Boyle PR, Boletzky SV (1996) Cephalopod populations: definition and dynamics. Trans R Soc London B 351:985–1002Google Scholar
  10. Boyle PR, Rodhouse PG (2005) Cephalopods: ecology and fisheries. Wiley-Blackwell, OxfordGoogle Scholar
  11. Braga ES, Müller TJ (1998) Observation of regeneration of nitrate, phosphate and silicate during upwelling off Ubatuba, Brazil, 23°S. Cont Shelf Res 18:915–922Google Scholar
  12. Brakoniecki TF (1984) A full description of Loligo sanpaulensis, Brakoniecki, 1984 and a redescription of Loligo Gahi d’Orbigny, 1835, two species of squid (Cephalopoda: Myopsida) from the Southwest Atlantic. Bull Mar Sci 34:435–448Google Scholar
  13. Brandini FP, Nogueira M, Simião M, Carlos Ugaz Codina J, Almeida Noernberg M (2014) Deep chlorophyll maximum and plankton community response to oceanic bottom intrusions on the continental shelf in the South Brazilian Bight. Cont Shelf Res 89:61–75Google Scholar
  14. Calado L, Gangopadhyay A, Silveira ICA (2006) A parametric model for the Brazil Current meanders and eddies off southeastern Brazil. Geophys Res Lett 33:L12602Google Scholar
  15. Campos EJD, Gonçalves JE, Ikeda Y (1995) Water mass structure and geostrophic circulation in the South Brazil Bight: summer of 1991. J Geophys Res 100:18537–18550Google Scholar
  16. Campos EJD, Ikeda Y, Castro BM, Gaeta SA, Lorenzzetti JA, Stevenson MR (1996) Experiment studies circulation in the Western South Atlantic. EOS Trans Am Geophys Union 77:253–259Google Scholar
  17. Campos EJD, Velhote D, Silveira ICA (2000) Shelf break upwelling driven by Brazil Current cyclonic meanders. Geophys Res Lett 27:751–754Google Scholar
  18. Carbonel C (1998) Modelling of upwelling in the coastal area of Cabo Frio (Rio de Janeiro, Brazil). Braz J Oceanogr 46:1–17Google Scholar
  19. Castellanos ZJA (1960) Una nueva especie de calamar argentino Ommastrephes argentinus sp. nov. (Mollusca: Cephalopoda). Neotropica 6:55–58Google Scholar
  20. Castro BM, Miranda LB (1998) Physical oceanography of the western Atlantic continental shelf located between 4°N and 34°S. In: Robinson R, Brink KH (eds) The sea. John Wiley and Sons, New York, pp 209–251Google Scholar
  21. Castro-Filho BM, Miranda LB, Miyao SY (1987) Condições hidrográficas na plataforma continental ao largo de Ubatuba: variações sazonais e em média escala. Bol Inst Oceanogr 35:135–151Google Scholar
  22. Cerda C, Castro BM (2014) Hydrographic climatology of South Brazil Bight shelf waters between São Sebastião (24°S) and Cabo São Tomé (22°S). Cont Shelf Res 89:5–14Google Scholar
  23. Clarke MR (1996) The role of cephalopods in the world’s oceans. Phil Trans R Soc London B 351:979–1112Google Scholar
  24. Coelho LI, Muto EY, Marian JEAR, Soares LSH (2010) Contribuição ao conhecimento da dieta, atividade alimentar e reprodução de Lolliguncula brevis (Blainville, 1823) na região costeira de Santos (Estado de São Paulo). Bol Inst Pesca 36:225–236Google Scholar
  25. Costa PAS, Fernandes FC (1993a) Seasonal and spatial changes of cephalopods caught in the Cabo Frio (Brazil) upwelling system. Bull Mar Sci 52:751–759Google Scholar
  26. Costa PAS, Fernandes FC (1993b) Reproductive cycle of Loligo sanpaulensis (Cephalopoda: Loliginidae) in the Cabo Frio region, Brazil. Mar Ecol Prog Ser 101:91–97Google Scholar
  27. Costa PAS, Haimovici MA (1990) Pesca de polvos e lulas no litoral do Rio de Janeiro. Ciên Cult 42:1124–1130Google Scholar
  28. Cuvier G (1797) Tableau élémentaire de l’histoire naturelle des animaux. Baudouin, ParisGoogle Scholar
  29. Dawe EG, Coulburne EB, Drinkwater KF (2000) Environmental effects on recruitment of short-finned squid (Illex illecebrosus). ICES J Mar Sci 57:1002–1013Google Scholar
  30. de Blainville HD (1823) Memoire sur les especes du genre calamar (Loligo, Lamarck). J Phys Chim Hist Nat 96:116–135Google Scholar
  31. De Silva-Dávila R, Franco-Gordo C, Hochberg FG et al (2015) Cephalopod paralarval assemblages in the Gulf of California during 20042007. Mar Ecol Prog Ser 520:123–141Google Scholar
  32. Fioroni VP (1981) Die Sonderstellung der Sepioliden, ein Vergleich der Ordnungen der rezenten Cephalopoden. Zool. Jahrb., Abt. Syst. Ökol. Geogr. Tiere 108:178–228Google Scholar
  33. Franco BC, Muelbert JH, Mata MM (2006) Mesoscale physical processes and the distribution and composition of ichthyoplankton on the southern Brazilian shelf break. Fish Oceanogr 15:37–43Google Scholar
  34. Gaeta SA, Ribeiro SMS, Metzler PM, Francos MS, Abe DS (1999) Environmental forcing on phytoplankton biomass and primary productivity of the coastal ecosystem in Ubatuba region, southern Brazil. Rev Bras Oceanogr 47:11–27Google Scholar
  35. Gasalla MA, Perez JAA, Marques CA, Tomás ARG, Aguiar DC, Oliveira UC (2005a) Loligo sanpaulensis (Brakoniecki, 1984). In: Cergole M, Ávila-da-Silva AO, Rossi-Wongtschowski CLB (eds) Análise das principais pescarias comerciais da região Sudeste-Sul do Brasil: dinâmica populacional das espécies em explotação. Instituto Oceanográfico – USP (Série documentos REVIZEE: Score Sul), São Paulo, pp 69–80Google Scholar
  36. Gasalla MA, Postuma FA, Tomás ARG (2005b) Captura de lulas (Mollusca: Cephalopoda) pela pesca industrial desembarcada em Santos: comparação após 4 décadas. Braz J Aquat Sci Technol 9:5–8Google Scholar
  37. Gasalla MA, Rodrigues AR, Postuma FA (2010) The trophic role of the squid Loligo plei as a keystone species in the South Brazil Bight ecosystem. ICES J Mar Sci 67:1413–1424Google Scholar
  38. González M, Sánchez P (2002) Cephalopod assemblages caught by trawling along the Iberian Peninsula Mediterranean coast. Sci Mar 66:199–208Google Scholar
  39. González AF, Trathan P, Yau C, Rodhouse PG (1997) Interactions between oceanography, ecology and fishery biology of ommastrephid squid Martialia hyadesi in the South Atlantic. Mar Ecol Prog Ser 152:205–215Google Scholar
  40. González F, Otero J, Guerra A, Prego R, Rocha F, Dale AW (2005) Distribution of common octopus and common squid paralarvae in a wind-driven upwelling area (Ria of Vigo, northwestern Spain). J Plankton Res 27:271–277Google Scholar
  41. Gonzalez-Rodriguez E, Valentin JL, André DL, Jacob SA (1992) Upwelling and downwelling at Cabo Frio (Brazil). J Plankton Res 14:289–306Google Scholar
  42. Gray JE (1849) Catalogue of the Mollusca in the collection of the British Museum, part I: Cephalopoda antepedia. British Museum, LondonGoogle Scholar
  43. Grimpe G (1916) Chunioteuthis. Eine neue Cephalopodengattung. Zool Anz 46:349–359Google Scholar
  44. Haimovici M (1998) Cefalópodes. In: Seeliger U, Odebrecht C, Castello JP (eds) Os ecossistemas costeiro e marinho do extremo sul do Brasil. Ecoscientia, Rio Grande, pp 162–165Google Scholar
  45. Haimovici M, Andrigueto-Filho JM (1986) Cefalópodes costeiros capturados na pesca de arrasto do litoral sul do Brasil. Arq Biol Tecnol 29:473–495Google Scholar
  46. Haimovici M, Perez JAA (1991) Coastal cephalopod fauna of southern Brazil. Bull Mar Sci 49:221–230Google Scholar
  47. Haimovici M, Perez JAA, Costa PAS (1989) A review of cephalopods occurring in the waters of Rio de Janeiro state, Brazil with first record of four species. Rev Bras Biol 49:503–510Google Scholar
  48. Haimovici M, Perez JAA, Santos RA (1994) Class Cephalopoda Cuvier, 1798. In: Rios EC (ed) Seashells of Brazil. FURG, Rio Grande, pp 311–320Google Scholar
  49. Haimovici M, Vidal EAG, Perez JAA (1995) Larvae of Illex argentinus (Castellanos, 1960) from five surveys on the continental shelf of southern Brazil. ICES Mar Sci Symp 199:414–424Google Scholar
  50. Haimovici M, Piatkowski U, Santos RA (2002) Cephalopod paralarvae around tropical seamounts and oceanic islands off the north-eastern coast of Brazil. Bull Mar Sci 71:313–330Google Scholar
  51. Jereb P, Roper CFE (eds) (2010) Cephalopods of the world an annotated and illustrated catalogue of species known to date. Volume 2, Myopsid and Oegopsid Squids. FAO Species Catalogue for Fishery Purposes. FAO, RomeGoogle Scholar
  52. Joubin L (1896) Observations sur divers Céphalopodes. Premiere Note: Abraliopsis pfefferi (nov. gen. et spec.). Bull Soc Scient Méd Ouest 5:19–35Google Scholar
  53. Juanicó M (1979) Contribuição ao estudo da biologia dos cefalópodes Loliginidae do Atlântico Sul Ocidental entre o Rio de Janeiro e Mar del Plata. Ph. D thesis, Universidade de São PauloGoogle Scholar
  54. Katsuragawa M, Dias JF, Harari J, Namiki C, Zani-Teixeira ML (2014) Patterns in larval fish assemblages under the influence of the Brazil current. Cont Shelf Res 89:103–117Google Scholar
  55. Keller S, Bartolino V, Hidalgo M, Bitetto I, Casciaro L, Cuccu D et al (2016) Large-scale spatio-temporal patterns of Mediterranean cephalopod diversity. PLoS One 11:e0146469PubMedPubMedCentralGoogle Scholar
  56. Kindt R, Coe R (2005) Tree diversity analysis: a manual and software for common statistical methods for ecological and biodiversity studies. World Agroforestry Centre (ICRAF), NairobiGoogle Scholar
  57. Laptikhovsky VV (1999) Fecundity and spawning in squid of families Enoploteuthidae and Ancistrocheiridae (Cephalopoda: Oegopsida). Sci Mar 63:1–7Google Scholar
  58. Leach WE (1817) Synopsis of the orders, families and genera of the class Cephalopoda. Zool Miscell 7:373–376Google Scholar
  59. Leach WE (1818) Sur plusieurs espèces nouvelles de la classe des Céphalopodes et sur une nouvelle distribution systématique des ordres, familles et genres de cette classe. J Phys Chim Hist Nat 86:393–396Google Scholar
  60. Lesueur CA (1821) Description of several new species of cuttlefishes. J Acad Nat Sci Phila 2:86–101Google Scholar
  61. Linnaeus C (1758) Systema naturae. Laurentius Salvius, StockholmGoogle Scholar
  62. Lopes RM, Katsuragawa M, Dias JF, Montú MA, Muelbert JH, Gorri C, Brandini FP (2006) Zooplankton and ichthyoplankton distribution on the southern Brazilian shelf: an overview. Sci Mar 70:189–202Google Scholar
  63. Lorenzzetti JA, Gaeta SA (1996) The Cape Frio upwelling effect over the South Brazil Bight northern sector shelf waters: a study using AVHRR images. Int Arch Photogramm Remote Sens 31:448–453Google Scholar
  64. Macedo-Soares LCP, Garcia CAE, Freire AS, Muelbert JH (2014) Large-scale ichthyoplankton and water mass distribution along the South Brazil Shelf. PLoS One 9:e91241PubMedPubMedCentralGoogle Scholar
  65. Mahiques MM, Tessler MG, Ciotti AM, Silveira ICA, Sousa SHM, Figueira RCL, Tassinari CCG, Furtado VV, Passos RF (2004) Hydrodynamically driven patterns of recent sedimentation in the shelf and upper slope off Southeast Brazil. Cont Shelf Res 24:1685–1697Google Scholar
  66. Martins RS, Perez JAA (2008) Artisanal fish-trap fishery around Santa Catarina island during spring/summer: characteristics, species interactions and the influence of the winds on the catches. Bol Inst Pesca 34:413–423Google Scholar
  67. Martins RS, Camargo R, Gasalla MA (2014) The São Paulo shelf (SE Brazil) as a nursery ground for Doryteuthis plei (Blainville, 1823) (Cephalopoda, Loliginidae) paralarvae: a Lagrangian particle-tracking individual-based model approach. Hydrobiologia 725:57–68Google Scholar
  68. Matsuura Y (1996) A probable cause of recruitment failure of the Brazilian sardine Sardinella aurita population during the 1974/75 spawning season. S Afr J Mar Sci 17:29–35Google Scholar
  69. Metzler PM, Glibert PM, Gaeta SA, Ludlam J (1997) New and regenerated production in the South Atlantic off Brazil. Deep Sea Res I 44:363–384Google Scholar
  70. Miranda LB, Katsuragawa M (1991) Estrutura térmica na região sudeste do Brasil (outubro/novembrode1988). Publ Esp Inst Oceanogr 8:1–14Google Scholar
  71. Moreno A, dos Santos A, Piatkowski U, Santos AMP et al (2009) Distribution of cephalopod paralarvae in relation to the regional oceanography of the western Iberia. J Plankton Res 31:73–91Google Scholar
  72. Naef A (1912) Teuthologische Notizen. 4. Die Gattungen der Loliginidae. Zool Anz 39:741–745Google Scholar
  73. Namiki C, Katsuragawa M, Napolitano DC, Zani-Teixeira ML, Mattos RA, Silveira ICA (2017) Hydrodynamically-driven distribution of lanternfish larvae in the Southeast Brazilian bight. J Mar Syst 170:115–133Google Scholar
  74. Oksanen J, Blanchet FG, Kindt R et al. (2010) Vegan: community ecology package. R package version 1.17–3.
  75. Orbigny Ad' (1835-1848) Histoire naturelle générale et particulière des céphalopodes acétabulifères vivants et fossiles. JB Bailiére, ParisGoogle Scholar
  76. Otero J, González ÁF, Sieiro MP, Guerra Á (2007) Reproductive cycle and energy allocation of Octopus vulgaris in Galician waters, NE Atlantic. Fish Res 85:122–129Google Scholar
  77. Palacio, FJ (1977) A study of coastal cephalopods from Brazil with reference to Brazilian zoogeography. Ph. D thesis, University of MiamiGoogle Scholar
  78. Pecl G, Jackson F (2008) The potential impacts of climate change on inshore squid: biology, ecology and fisheries. Rev Fish Biol Fish 18:373–385Google Scholar
  79. Pecl GT, Moltschaniwskyj NA, Tracey SR, Jorda AR (2004) Inter-annual plasticity of squid life history and population structure: ecological and management implications. Oecologia 139:515–524PubMedGoogle Scholar
  80. Perez JAA, Aguiar DC, Oliveira UC (2002) Biology and population dynamics of the long-finned squid Loligo plei (Cephalopoda: Loliginidae) in southern Brazilian waters. Fish Res 58:267–279Google Scholar
  81. Perez JAA, Gasalla MA, Aguiar DC, Oliveira UC, Marques CA, Tomás ARG (2005) Loligo plei. In: Cergole M, Ávila-da-Silva AO, Rossi-Wongtschowski CLB (eds) Análise das principais pescarias comerciais da região Sudeste-Sul do Brasil: dinâmica populacional das espécies em explotação. Instituto Oceanográfico – USP (Série documentos REVIZEE: Score Sul), São Paulo, pp 62–68Google Scholar
  82. Pfeffer G (1900) Synopsis der oegopsiden Cephalopoden. Mitteilungen der Naturhistorischen Museum in Hamburg 17:147–198Google Scholar
  83. Pfeffer G (1908) Die Cephalopoden. Nordishes Plankton 2:9–116Google Scholar
  84. Pfeffer G (1912) Die Cephalopoden der Plankton-Expedition. Ergebnisse der Plankton-Expedition der Humbolt 2:1–815Google Scholar
  85. Piatkowski U, Pierce GJ, Cunha MM (2001) Impact of cephalopods in the food chain and their interaction with the environment and fisheries: an overview. Fish Res 52:5–10Google Scholar
  86. Postuma FA, Gasalla MA (2010) On the relationship between squid and the environmental: artesanal jigging for Loligo plei at São Sebastião Island (24°S) southeastern Brazil. ICES J Mar Sci 67:1353–1362Google Scholar
  87. Postuma FA, Gasalla MA (2014) Reproductive activity of the tropical arrow squid Doryteuthis plei around São Sebastião Island (SE Brazil) based on a 10-year fisheries monitoring. Fish Res 152:45–54Google Scholar
  88. Postuma FA, Gasalla MA (2015) Ethogram analysis reveals new body patterning behavior of the tropical arrow squid Doryteuthis plei off the São Paulo coast. Biol Bull 229:143–159PubMedGoogle Scholar
  89. Prosch V (1847) Nogle nye Cephalopoder, beskrevnc og anatomisk undersogte. Kongelige Danske Videnskabernes Selskabs Skrifter 1:53–72Google Scholar
  90. R Development Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.r-
  91. Rodhouse PG, Pierce GJ, Nichols OC et al (2014) Environmental effects on cephalopod population dynamics: implications for management of fisheries. Adv Mar Bio 67:99–233Google Scholar
  92. Rodrigues AR, Gasalla MA (2008) Spatial and temporal patterns in size and maturation of Loligo plei and Loligo sanpaulensis (Cephalopoda: Loliginidae) in southeastern Brazilian waters, between 23°S and 27°S. Sci Mar 72:631–643Google Scholar
  93. Rosa R, Dierssen HM, Gonzalez L, Seibel BA (2008a) Large-scale diversity patterns of cephalopods in the Atlantic open ocean and deep sea. Ecology 89:3449–3461PubMedGoogle Scholar
  94. Rosa R, Dierssen HM, Gonzalez L, Seibel BA (2008b) Ecological biogeography of cephalopod molluscs in the Atlantic Ocean: historical and contemporary causes of coastal diversity patterns. Glob Ecol Biogeogr 17:600–610Google Scholar
  95. Roura A, Álvarez-Salgado XA, González AF, Greogori M, Rosón G, Otero J, Guerra A (2016) Life strategies of cephalopod paralarvae in a coastal upwelling system (NW Iberian Peninsula): insights from zooplankton community and spatio-temporal analyses. Fish Oceanogr 25:241–258Google Scholar
  96. Rüppell E (1844) Intorno ad alcuni cefalopodi del mare di Messina: lettera del Dr. Eduardo Ruppell di Frankfort sul Meno al Prof Anastasio Cocco Giornale del Gabinetto Letterario di Messina 5:129–135Google Scholar
  97. Sakurai Y, Kiyofuji H, Saitoh S, Goto T, Hiyama Y (2000) Changes in inferred spawning areas of Todarodes pacificus (Cephalopoda: Ommastrephidae) due to changing environmental conditions. ICES J Mar Sci 57:24–30Google Scholar
  98. Santos RA, Haimovici M (1998) Trophic relationships of the long-finned squid Loligo sanpaulensis on the Southern Brazilian Shelf. S Afr J Mar Sci 20:81–91Google Scholar
  99. Santos RA, Haimovici M (2001) Cephalopods in the diet of marine mammals stranded or incidentally caught along southeastern and southern Brazil (21-34°S). Fish Res 52:99–112Google Scholar
  100. Santos RA, Haimovici M (2002) Cephalopods in the trophic relations off southern Brazil. Bull Mar Sci 71:753–770Google Scholar
  101. Santos RA, Haimovici M (2007) Composição de espécies, distribuição e abundância relativa de cefalópodes do ambiente pelágico da plataforma externa e talude superior da região Sudeste-Sul do Brasil. In: Bernardes RA, Rossi-Wongtschowski CLB, Madureira LS (eds) Prospecção pesqueira de espécies pelágicas de pequeno porte na Zona Econômica Exclusiva da Região Sudeste-Sul do Brasil, Instituto Oceanográfico – USP (Série documentos REVIZEE: Score Sul), São Paulo, pp 101–135Google Scholar
  102. Silva L, Vila Y, Torres MA, Sobrino I, Acosta JJ (2011) Cephalopod assemblages, abundance and species distribution in the Gulf of Cadiz (SW Spain). Aquat Living Resour 24:13–26Google Scholar
  103. Silveira ICA, Schmidt ACK, Campos EJD, Godoi SS, Ikeda Y (2000) A Corrente do Brasil ao Largo da Costa Leste Brasileira. Rev Bras Oceanogr 48:171–183Google Scholar
  104. Smith PE, Richardson SL (1977) Standard techniques for pelagic fish egg and larvae surveys. FAO Fish Tech Pap 175:1–100Google Scholar
  105. Staudinger MD (2006) Seasonal and size-based predation on two species of squid by four fish predators on the Northwest Atlantic continental shelf. Fish Bull 104:605–615Google Scholar
  106. Stech JL, Lorenzetti JA (1992) The response of the South Brazil Bight to the passage of wintertime cold fronts. J Geophys Res 97:9507–9520Google Scholar
  107. Steenstrup J (1855) Kjaeber af en kolossal Blaecksprutter. Oversigt over det Kongelige Danske Videnskabernes Selskabs Forhandlinger 5/6:199–200Google Scholar
  108. Steenstrup J (1857) Oplysning om en ny art af blaeksprutter, Dosidicus eschrichtii. Oversigt over det Kongelige Danske Videnskabernes Selskabs Forhandlinger, 185 1/2:11–14Google Scholar
  109. Steenstrup J (1880) De Ommatostrephagtige blaeksprutter indbyrdes forhold. Oversigt over det Kongelige Danske Videnskabernes Selskabs Forhandlinger 73–110Google Scholar
  110. Sumida PYG, Yoshinaga MY, Ciotti AM, Gaeta SA (2005) Benthic response to upwelling events off the SE Brazilian coast. Mar Ecol Prog Ser 291:35–42Google Scholar
  111. Sweeney MJ, Roper CFE, Mangold KM, Clarke MR, Boletzky SV (1992) Larval and juvenile cephalopods: a manual for their identification. Smithson Contrib Zool (513):1–282Google Scholar
  112. Tryon GW (1879) Argonautidae. In: Tryon GW (1883) Manual of conchology, structural and systematic: with illustrations of the species 1:133–141Google Scholar
  113. Valentin JL (1984) Spatial structure of the zooplankton community in the Cabo Frio region (Brazil) influenced by coastal upwelling. Hydrobiologia 113:183–199Google Scholar
  114. Vaske Jr T, Pereira da Costa FA (2011) Lulas e polvos da costa brasileira. UFC LABOMAR-UNISANTA FortalezaGoogle Scholar
  115. Vecchione M, Roper CF, Sweeney MJ, Lu CC (2001) Distribution, relative abundance and developmental morphology of paralarval cephalopods in the Western North Atlantic Ocean. NOAA Tech Rep NMFS 152:1–54Google Scholar
  116. Vecchione M, Jorgensen EM, Sakurai Y (2017) Editorial: recent advances in the knowledge of cephalopod biodiversity. Mar Biodivers 47:619–620Google Scholar
  117. Verany JB (1851) Cephalopodes de la Méditerranée. In: Mollusques Mediteranéens observes, décrits figurés et chromo-lithographiés d’après nature sur de modèles vivant. Genes 1:1–137Google Scholar
  118. Vidal EAG, Haimovici M, Hackbart CS (2010) Distribution of paralarvae and small juvenile cephalopods in relation to primary production in an upwelling area off southern Brazil. ICES J Mar Sci 67:1346–1352Google Scholar
  119. Voss GL (1953) A new family, genus and species of myopsid squid from the Florida Keys. Bull Mar Sci 2:602–609Google Scholar
  120. Waluda C, Rodhouse PG, Podestá GP et al (2001) Surface oceanography of the inferred hatching grounds of Illex argentinus (Cephalopoda: Ommastrephidae) and influences on recruitment variability. Mar Biol 139:671–679Google Scholar
  121. Yoshinaga MY, Sumida PYG, Silveira ICA, Ciotti AM, Gaeta SA, Pacheco LFCM, Koettker AG (2010) Vertical distribution of benthic invertebrate larvae during an upwelling event along a transect off the tropical Brazilian continental margin. J Mar Syst 79:124–133Google Scholar
  122. Young RE, Harman RF (1988) Larva, paralarva and subadult in cephalopod terminology. Malacologia 29:201–207Google Scholar
  123. Zaragoza N, Quetglas A, Moreno A (2015) Identification guide for cephalopod paralarvae from the Mediterranean Sea. ICES Coop Res Rep 324:1–91Google Scholar
  124. Zittel, KA von (1895). Grundzüge der Paläontologie (Paläozoologie), I Abteilung, Invertebrata. Oldenburg. Druck und Verlag von R. Oldenbourg, München and LeipzigGoogle Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung 2019

Authors and Affiliations

  1. 1.Graduate Program in Oceanography, Oceanographic InstituteUniversity of São PauloSão PauloBrazil
  2. 2.Fisheries Ecosystems Laboratory, Oceanographic InstituteUniversity of São PauloSão PauloBrazil

Personalised recommendations