Advertisement

Distribution and abundance of net-captured calycophoran siphonophores and other gelatinous zooplankton in the Sargasso Sea European eel spawning area

  • Florian LüskowEmail author
  • Philipp Neitzel
  • Michael J. Miller
  • Lasse Marohn
  • Klaus Wysujack
  • Marko Freese
  • Jan-Dag Pohlmann
  • Reinhold Hanel
Original Paper

Abstract

Gelatinous zooplankton (GZ) such as medusae, ctenophores, siphonophores, pyrosomes and salps are important components of oceanic pelagic communities and small calycophoran siphonophores (CS) are typically abundant at shallow depths. The Sargasso Sea spawning area of the Atlantic catadromous freshwater eels has a regular pattern of shallow autumn to spring temperature fronts. There is limited information about the southern Sargasso Sea GZ fauna, and it is not known which species are distributed across these frontal zones. Plankton samples from a survey of larval European eel (Anguilla anguilla) abundance in March and April 2017 using an Isaacs-Kidd Midwater Trawl (0–300 m, 35 stations, three transects) were used to examine the distribution and abundance of net-captured CS and other GZ species in relation to oceanographic characteristics. More than 2200 specimens of 15 taxa were sub-sampled, with five CS (Abylopsis tetragona, A. eschscholtzii, Chelophyes appendiculata, Eudoxoides spiralis and E. mitra) dominating catches at every station. GZ were most abundant around the 22 and 24 °C isotherms, and higher abundances of CS in the north were correlated with lower water temperature. The widespread presence of CS across the European eel spawning area is consistent with a recent study detecting their DNA sequences in the gut contents of young eel larvae collected in the Sargasso Sea, suggesting CS material was either eaten directly or as part of ingested marine snow particles. The present study shows that both types of organisms occupy the southern Sargasso Sea during the European eel spawning season.

Keywords

Western North Atlantic Ocean Co-occurrence Leptocephalus diet Anguilla Net sampling 

Notes

Acknowledgements

We greatly appreciate the captain and crew of the FR/V Walther Herwig III for their efforts to collect the specimens. Katsumi Tsukamoto provided support for Michael J. Miller to join the 2017 sampling survey. We thank Tina Blancke, Daniel J. Ayala, Maria Blažina, Zuzana Musilová and Louis Bergemann who helped with IKMT sampling and sorting and Warren R. Francis for help with statistical analyses. We appreciate the constructive comments made by three anonymous reviewers on the manuscript.

Funding

This study was supported by the German Federal Ministry of Food and Agriculture (BMLE) who provided ship time and financial support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

All applicable international, national and institutional guidelines for the care and use of animals were followed by the authors.

Sampling and field studies

All necessary permits for sampling and observational field studies have been obtained by the authors from the competent authorities.

Data availability

All data used to create Figures and Tables in this paper can be accessed from the Supplementary Material.

Supplementary material

12526_2019_971_MOESM1_ESM.pdf (43 kb)
ESM 1 (PDF 43.2 kb)

References

  1. Alldredge AL, Silver MW (1988) Characteristics, dynamics and significance of marine snow. Prog Oceanogr 20(1):41–82.  https://doi.org/10.1016/0079-6611(88)90053-5
  2. Aldredge AL, Madin LP (1982) Pelagic tunicates: unique herbivores in the marine plankton. BioSci 32(8):655–663 Google Scholar
  3. Álvarez-García FJ, Ortiz-Bevia MJ, Cabos-Narvaez WD (2011) On the structure and teleconnections of North Atlantic decadal variability. J Clim 24:2209–2223.  https://doi.org/10.1175/2011JCLI3478.1
  4. Andersen V, Sardou J (1994) Pyrosoma atlanticum (Tunicata, Thaliacea): diel migration and vertical distribution as a function of colony size. J Plankton Res 16(4):337–349.  https://doi.org/10.1093/plankt/16.4.337
  5. Andersen V, Sardou J, Nival P (1992) The diel migrations and vertical distributions of zooplankton and micronekton in the northwestern Mediterranean Sea. 2. Siphonophores, hydromedusae and pyrosomids. J Plankton Res 14(8):1155–1169.  https://doi.org/10.1093/plankt/14.8.1155
  6. Andersen V, Francois F, Sardou J, Picheral M, Scotto M, Nival P (1998) Vertical distributions of macroplankton and micronekton in the Ligurian and Tyrrhenian seas (northwestern Mediterranean). Oceanol Acta 21(5):655–676.  https://doi.org/10.1016/S0399-1784(98)90007-X
  7. Andersen V, Devey C, Gubanova A, Picheral M, Meelnikov V, Tsarin S, Prieur L (2004) Vertical distributions of zooplankton across the Almeria-Oran frontal zone (Mediterranean Sea). J Plankton Res 26(3):275–293.  https://doi.org/10.1093/plankt/fbh036
  8. Andersen NG, Nielsen TG, Jakobsen HH, Munk P, Riemann L (2011) Distribution and production of plankton communities in the subtropical convergence zone of the Sargasso Sea. II. Protozooplankton and copepods. Mar Ecol Prog Ser 426:71–86.  https://doi.org/10.3354/meps09047
  9. Ayala DJ, Munk P, Lundgreen RBC, Traving SJ, Jaspers C, Jørgensen TS, Hansen LH, Riemann L (2018) Gelatinous plankton is important in the diet of European eel (Anguilla anguilla) larvae in the Sargasso Sea. Sci Rep 8:6156.  https://doi.org/10.1038/s41598-018-24388-x
  10. Backus RH, Craddock JE, Haedrich RL, Shores DL (1969) Mesopelagic fishes and thermal fronts in the western Sargasso Sea. Mar Biol 3(2):87–106.  https://doi.org/10.1007/BF00353427
  11. Biggs DC, Bidigare RR, Smith DE (1981) Population density of gelatinous macrozooplankton: in situ estimation in oceanic surface waters. Biol Oceanogr 1(2):157–173Google Scholar
  12. Brodeur RD, Perry RI, Boldt J, Flostrand L, Galbraith M, King J, Murphy J, Sakuma K, Thompson A (2018) An unusual gelatinous plankton event in the NE Pacific: the great pyrosome bloom of 2017. PICES Press 26(1):22–27Google Scholar
  13. Bucklin A, Ortman BD, Jennings RM, Nigro LM, Sweetman CJ, Copley NJ, Sutton T, Wiebe PH (2010) A “Rosetta Stone” for metazoan zooplankton: DNA barcode analysis of species diversity of the Sargasso Sea (Northwest Atlantic Ocean). Deep-Sea Res II 57:2234–2247.  https://doi.org/10.1016/j.dsr2.2010.09.025
  14. Buecher E, Goy J, Planque B, Etienne M, Dallot S (1996) Long-term fluctuations of Liriope tetraphylla in Villefranche Bay between 1966 and 1993 compared to Pelagia noctiluca populations. Oceanol Acta 20(1):145–157Google Scholar
  15. Cardona L, de Quevedo IÁ, Borrell A, Aguilar A (2012) Massive consumption of gelatinous plankton by Mediterranean apex predators. PLoS One 7(3):e31329.  https://doi.org/10.1371/journal.pone.0031329 Google Scholar
  16. Carré C, Carré D (1991) A complete life cycle of the calycophoran siphonophore Muggiaea kochi (will) in the laboratory, under different temperature conditions: ecological implications. Philos Trans R Soc B.  https://doi.org/10.1098/rstb.1991.0095
  17. Chow S, Kurogi H, Watanabe S, Matsunari H, Sudo R, Nomura K, Tanaka H, Furuita H, Nishimoto A, Higuchi M, Jinbo T, Tomoda T (2017) Onboard rearing attempts for the Japanese eel leptocephali using POM-enriched water collected in the Western North Pacific. Aquat Living Resour 30.  https://doi.org/10.1051/alr/2017037
  18. Choy CA, Haddock SHD, Robison BH (2017) Deep pelagic food web structure as revealed by in situ feeding observations. Proc R Soc B 284(1868):20172116.  https://doi.org/10.1098/rspb.2017.2116 Google Scholar
  19. Condon RH, Graham WM, Duarte CM, Pitt KA, Lucas CH, Haddock SHD, Sutherland KR, Robinson KL, Dawson MN, Decker MB, Mills CE, Purcell JE, Malej A, Mianzan HW, Uye S-i, Gelcich S, Madin LP (2012) Questioning the rise of gelatinous zooplankton in the world’s oceans. BioScience 62(2):160–167.  https://doi.org/10.1525/bio.2012.62.2.9 Google Scholar
  20. Condon RH, Duarte CM, Pitt KA, Robinson KL, Lucas CH, Sutherland KR, Mianzan HW, Bogeberg M, Purcell JE, Decker MB, Uye S-i, Madin LP, Brodeur RD, Haddock SHD, Malej A, Parry GD, Eriksen E, Quiñones J, Acha M, Harvey M, Arthur JM, Graham WM (2013) Recurrent jellyfish blooms are a consequence of global oscillations. PNAS 110(3):1000–1005.  https://doi.org/10.1073/pnas.1210920110 Google Scholar
  21. Corgnati L, Marini S, Mazzei L, Ottaviani E, Aliani S, Conversi A, Griffa A (2016) Looking inside the ocean: toward an autonomous imaging system for monitoring gelatinous zooplankton. Sensors 16(12):2124.  https://doi.org/10.3390/s16122124 Google Scholar
  22. Deevey GB (1971) The annual cycle in quantity and composition of the zooplankton population of the Sargasso Sea off Bermuda. Limnol Oceanogr 16(2):219–240.  https://doi.org/10.4319/lo.1971.16.2.0219 Google Scholar
  23. Drits AV, Arashkevich EG, Semenova TN (1992) Pyrosoma atlanticum (Tunicata, Thaliacea): grazing impact on phytoplankton standing stock and role in organic carbon flux. J Plankton Res 14(6):799–809.  https://doi.org/10.1093/plankt/14.6.799 Google Scholar
  24. Eden BR, Steinberg DK, Goldthwait SA, McGillicuddy DJ Jr (2009) Zooplankton community structure in a cyclonic and mode-water eddy in the Sargasso Sea. Deep-Sea Res I 56:1757–1776.  https://doi.org/10.1016/j.dsr.2009.05.005 Google Scholar
  25. Eriksen CC, Weller RA, Rudnick DL, Pollard RT, Regier LA (1991) Ocean frontal variability in the frontal air-sea interaction experiment. J Geophys Res 96(C5):8569–8591.  https://doi.org/10.1029/90JC02531 Google Scholar
  26. Feunteun E, Miller MJ, Carpentier A, Aoyama J, Dupuy C, Kuroki M, Pagano M, Réveillac E, Sellos D, Watanabe S, Tsukamoto K, Otake T (2015) Stable isotopic composition of anguilliform leptocephali and other food web components from west of the Mascarene plateau. Prog Oceanogr 137(A):69–83.  https://doi.org/10.1016/j.pocean.2015.05.024 Google Scholar
  27. Govoni J (2010) Feeding on protists and particulates by the leptocephali of the worm eels Myrophis spp. (Teleostei, Anguilliformes, Ophichthidae), and the potential energy contribution of large aloricate protozoa. Sci Mar 74:339–344.  https://doi.org/10.3989/scimar.2010.74n2339 Google Scholar
  28. Graham WM, Pagès F, Hamner WM (2001) A physical context for gelatinous zooplankton aggregations: a review. Hydrobiologia 451(1–3):199–212.  https://doi.org/10.1023/A:1011876004427 Google Scholar
  29. Greer AT, Cowen RK, Guigand CM, Hare JA (2015) Fine-scale planktonic habitat partitioning at a shelf-slope front revealed by a high-resolution imaging system. J Mar Syst 142:111–125.  https://doi.org/10.1016/j.jmarsys.2014.10.008 Google Scholar
  30. Grice GD, Hart AD (1962) The abundance, seasonal occurrence and distribution of the epizooplankton between New York and Bermuda. Ecol Monogr 32(4):287–309.  https://doi.org/10.2307/1942377 Google Scholar
  31. Hamner WM, Madin LP, Alldredge AL, Gilmer RW, Hamner PP (1975) Underwater observations of gelatinous zooplankton. Sampling problems, feeding biology, and behaviour. Limnol Oceanogr 20(6):907–917Google Scholar
  32. Hanel R, Stepputtis D, Bonhommeau S, Castonguay M, Schaber M, Wysujack K, Vobach M, Miller MJ (2014) Low larval abundance in the Sargasso Sea: new evidence about reduced recruitment of the Atlantic eels. Naturwissenschaften 101:1041–1054.  https://doi.org/10.1007/s00114-014-1243-6 Google Scholar
  33. Hansson LJ, Moeslund O, Kiørboe T, Riisgård HU (2005) Clearance rates of jellyfish and their potential predation impact on zooplankton and fish larvae in a neritic ecosystem (Limfjorden, Denmark). Mar Ecol Prog Ser 304:117–131.  https://doi.org/10.3354/meps304117 Google Scholar
  34. Harbison GR, Madin LP, Swanberg NR (1978) On the natural history and distribution of oceanic ctenophores. Deep-Sea Res 25:233–256.  https://doi.org/10.1016/0146-6291(78)90590-8 Google Scholar
  35. Hobson KA, Gloutney ML, Gibbs HL (1997) Preservation of blood and tissue samples for stable-carbon and stable-nitrogen isotope analysis. Can J Zool 75(10):1720–1723.  https://doi.org/10.1139/z97-799 Google Scholar
  36. Hosia ALJ, Stemmann L, Youngbluth MJ (2008) Distribution of net-collected planktonic cnidarians along the northern mid-Atlantic ridge and their associations with the main water masses. Deep-Sea Res II 55:106–118.  https://doi.org/10.1016/j.dsr2.2007.09.007 Google Scholar
  37. Hosia ALJ, Falkenhaug T, Baxter EJ, Pagès F (2017) Abundance, distribution and diversity of gelatinous predators along the northern mid-Atlantic ridge: a comparison of different sampling methodologies. PLoS One 12(11):e0187491.  https://doi.org/10.1371/journal.pone.0187491 Google Scholar
  38. Hoving H-JT, Haddock SHD (2017) The giant deep-sea octopus Haliphron atlanticus forages on gelatinous fauna. Sci Rep 7:44952.  https://doi.org/10.1038/srep44952 Google Scholar
  39. Huwer B, Storr-Paulsen M, Riisgård HU, Haslob H (2008) Abundance, horizontal and vertical distribution of the invasive ctenophore Mnemiopsis leidyi in the Central Baltic Sea, November 2007. Aquat Invasions 3(2):113–124.  https://doi.org/10.3391/ai.2008.3.2.1 Google Scholar
  40. Jacoby DMP, Casselman JM, Crook V, DeLucia M-B, Ahn H, Kaifu K, Kurwie T, Sasal P, Silfvergrip AMC, Smith KG, Uchida K, Walker AM, Gollock MJ (2015) Synergistic patterns of threat and the challenges facing global anguillid eel conservation. Global Ecol Conserv 4:321–333.  https://doi.org/10.1016/j.gecco.2015.07.009 Google Scholar
  41. Jarms G, Båmstedt U, Titelman H, Martinussen MB, Fosså JH (1999) The holopelagic life cycle of the deep-sea medusa Periphylla periphylla (Scyphozoa, Coronatae). Sarsia 84:55–65.  https://doi.org/10.1080/00364827.1999.10420451 Google Scholar
  42. Jaspers C, Costello JH, Sutherland KR, Gemmell B, Lucas KN, Tackett J, Dodge K, Colin SP (2018) Resilience in moving water: effects of turbulence on the predatory impact of the lobate ctenophore Mnemiopsis leidyi. Limnol Oceanogr 63(1):445–458.  https://doi.org/10.1002/lno.10642 Google Scholar
  43. Júnior MN, Brandini FP, Codina JCU (2015) Diel vertical dynamics of gelatinous zooplankton (Cnidaria, Ctenophora and Thaliacea) in a subtropical stratified ecosystem (south Brazilian bight). PLoS One 10(12):e0144161.  https://doi.org/10.1371/journal.pone.0144161 Google Scholar
  44. Katija K, Sherlock RE, Sherman AD, Robison BH (2017) New technology reveals the role of giant larvaceans in oceanic carbon cycling. Sci Adv 3(5):e1602374.  https://doi.org/10.1126/sciadv.1602374 Google Scholar
  45. Kiørboe T (2000) Colonization of marine snow aggregates by invertebrate zooplankton: abundance, scaling, and possible role. Limnol Oceanogr 45(2):479–484.  https://doi.org/10.4319/lo.2000.45.2.0479 Google Scholar
  46. Kleckner RC, McCleave JD (1988) The northern limit of spawning by Atlantic eels (Anguilla spp.) in the Sargasso Sea in relation to thermal fronts and surface water masses. J Mar Res 46(3):647–667.  https://doi.org/10.1357/002224088785113469 Google Scholar
  47. Larson RJ (1976) Cubomedusae: feeding – functional morphology, behavior and phylogenetic position. In: Mackie GO (ed) Coelenterate ecology and behaviour. Springer, Boston.  https://doi.org/10.1007/978-1-4757-9724-4_25 Google Scholar
  48. Latz MI, Frank TM, Case JF (1988) Spectral composition of bioluminescence of epipelagic organisms from the Sargasso Sea. Mar Biol 98:441–446.  https://doi.org/10.1007/bf00391120 Google Scholar
  49. Leavitt BB (1938) The quantitative vertical distribution of macrozooplankton in the Atlantic Ocean basin. Biol Bull 74(3):376–394.  https://doi.org/10.2307/1537811 Google Scholar
  50. Legand M (1969) Seasonal variations in the Indian Ocean along 110°E. IV. Macroplankton and micronekton biomass. Aust J Mar Freshwat Res 20(1):85–104.  https://doi.org/10.1071/MF9690085 Google Scholar
  51. Liénart C, Feunteun E, Miller MJ, Aoyama J, Mortillaro J-M, Hubas C, Kuroki M, Watanabe S, Dupuy C, Carpentier A, Otake T, Tsukamoto K, Meziane T (2016) Geographic variation in stable isotopic and fatty acid composition of anguilliform leptocephali and particulate organic matter in the South Pacific. Mar Ecol Prog Ser 544:225–241.  https://doi.org/10.3354/meps11575 Google Scholar
  52. Lindsay DJ, Grossmann MM, Nishikawa J, Bentlage B, Collins AG (2015) DNA barcoding of pelagic cnidarians: current status and future prospects. Bull Plankton Soc Japan 62(1):39–43Google Scholar
  53. Lischka A, Piatkowski U, Hanel R (2017) Cephalopods of the Sargasso Sea: distribution patterns in relation to oceanography. Mar Biodivers 47(3):685–697.  https://doi.org/10.1007/s12526-016-0629-4 Google Scholar
  54. Lo W-t, Biggs DC (1996) Temporal variability in the night-time distribution of epipelagic siphonophores in the North Atlantic Ocean at Bermuda. J Plankton Res 18(6):923–939.  https://doi.org/10.1093/plankt/18.6.923 Google Scholar
  55. Lomas MW, Steinberg DK, Dickey T, Carlson CA, Nelson NB, Condon RH, Bates NR (2010) Increased ocean carbon export in the Sargasso Sea linked to climate variability is countered by its enhanced mesopelagic attenuation. Biogeosciences 7(1):57–70.  https://doi.org/10.5194/bg-7-57-2010 Google Scholar
  56. Lucas CH, Reed AJ (2010) Gonad morphology and gametogenesis in the deep-sea jellyfish Atolla wyvillei and Periphylla periphylla (Scyphozoa: Coronatae) collected from Cape Hatteras and the Gulf of Mexico. J Mar Biol Assoc UK 90(6):1095–1104.  https://doi.org/10.1017/S0025315409000824 Google Scholar
  57. Luo JY, Grassian B, Tang D, Irisson J-O, Greer AT, Guigand CM, McClatchie S, Cowen RK (2014) Environmental drivers of the fine-scale distribution of a gelatinous zooplankton community across a mesoscale front. Mar Ecol Prog Ser 510:129–149.  https://doi.org/10.3354/meps10908 Google Scholar
  58. Mackie GO, Pugh PR, Purcell JE (1987) Siphonophore biology. Adv Mar Biol 24:97–262.  https://doi.org/10.1016/S0065-2881(08)60074-7 Google Scholar
  59. Madin LP (1988) Feeding behavior of tentaculate predators: in situ observations and a conceptual model. Bull Mar Sci 43(3):413–429Google Scholar
  60. Madin LP, Kremer P, Hacker S (1996) Distribution and vertical migration of salps (Tunicata, Thaliacea) near Bermuda. J Plan Res 18(5):747–755.  https://doi.org/10.1093/plankt/18.5.747 Google Scholar
  61. Mapstone GM (2014) Global diversity and review of Siphonophorae (Cnidaria: Hydrozoa). PLoS One 9(2):e87737.  https://doi.org/10.1371/journal.pone.0087737 Google Scholar
  62. McCleave JD, Kleckner RC, Castonguay M (1987) Reproductive sympatry of American and European eels and implications for migration and taxonomy. Am Fish Soc Symp 1:286–297Google Scholar
  63. McEwen GF, Johnson MW, Folsom T (1954) A statistical analysis of the performance of the Folsom plankton splitter, based on upon test observations. Arch Met Geoph Biokl A 7(1):502–527.  https://doi.org/10.1007/BF02277939 Google Scholar
  64. Mianzan HW, Cornelius PFS (1999) In: Boltovskoy D (ed) Cubomedusae and Scyphomedusae. in: South Atlantic Zooplankton. Backhuys Publishers, Leiden, pp 513–539Google Scholar
  65. Mied RP, Shen CY, Trump CL, Lindemann GJ (1986) Internal-inertial waves in a Sargasso Sea front. J Phys Oceanogr 16:1751–1762Google Scholar
  66. Miller MJ, McCleave JD (1994) Species assemblages of leptocephali in the subtropical convergence zone of the Sargasso Sea. J Mar Res 52(4):743–772.  https://doi.org/10.1357/0022240943076948 Google Scholar
  67. Miller MJ, Kimura S, Friedland KD, Knights B, Kim H, Jellyman DJ, Tsukamoto K (2009) Review of ocean-atmospheric factors in the Atlantic and Pacific oceans influencing spawning and recruitment of anguillid eels. Am Fish Soc Symp 69:231–249Google Scholar
  68. Miller MJ, Otake T, Aoyama J, Wouthuyzen S, Suharti S, Sugeha HY, Tsukamoto K (2011) Observations of gut contents of leptocephali in the north equatorial current and Tomini Bay, Indonesia. Coast Mar Sci 35(1):277–288Google Scholar
  69. Miller MJ, Chikaraishi Y, Ogawa NO, Yamada Y, Tsukamoto K, Ohkouchi N (2013a) A low trophic position of Japanese eel larvae indicates feeding on marine snow. Biol Lett 9:20120826.  https://doi.org/10.1098/rsbl.2012.0826 Google Scholar
  70. Miller MJ, Stepputtis D, Bonhommeau S, Castonguay M, Schaber M, Vobach M, Wysujack K, Hanel R (2013b) Comparisons of catches of large leptocephali using an IKMT and a large pelagic trawl in the Sargasso Sea. Mar Biodivers 43(4):493–501.  https://doi.org/10.1007/s12526-013-0170-7 Google Scholar
  71. Miller MJ, Bonhommeau S, Munk P, Castonguay M, Hanel R, McCleave JD (2015) A century of research on the larval distributions of the Atlantic eels: a re-examination of the data. Biol Rev 90:1035–1064.  https://doi.org/10.1111/brv.12144 Google Scholar
  72. Miller MJ, Feunteun E, Tsukamoto K (2016) Did a “perfect storm” of oceanic changes and continental anthropogenic impacts cause northern hemisphere anguillid recruitment reductions? ICES J Mar Sci 73(1):43–56.  https://doi.org/10.1093/icesjms/fsv063 Google Scholar
  73. Miller MJ, Marohn L, Wysujack K, Freese M, Pohlmann J-D, Westerberg H, Tsukamoto K, Hanel R (2019) Morphology and gut contents of anguillid and marine eel larvae in the Sargasso Sea. Zool Anz 279:138–151.  https://doi.org/10.1016/j.jcz.2019.01.008 Google Scholar
  74. Mills CE (1983) Vertical migration and diel activity patterns of hydromedusae: studies in a large tank. J Plankton Res 5(5):619–635.  https://doi.org/10.1093/plankt/5.5.619 Google Scholar
  75. Mochioka N, Iwamizu M (1996) Diet of anguilliod larvae: leptocephali feed selectivity on larvacean houses and fecal pellets. Mar Biol 125(3):447–452.  https://doi.org/10.1007/BF00353257 Google Scholar
  76. Moore HB (1949) The zooplankton of the upper waters of the Bermuda area of the North Atlantic. Bull Bingham Oceanogr Coll 12(2):1–97Google Scholar
  77. Moore E, Sander F (1979) A comparative study of zooplankton from oceanic, shelf, and harbor waters of Jamaica. Biotropica 11(3):196–206.  https://doi.org/10.2307/2388039 Google Scholar
  78. Munk P, Hansen MM, Maes GE, Nielsen TG, Als TD, Aarestrup K, Andersen NG, Bachler M (2010) Oceanic fronts in the Sargasso Sea control the early life and drift of Atlantic eels. Proc R Soc B 277(1700):3593–3599.  https://doi.org/10.1098/rspb.2010.0900 Google Scholar
  79. Munk P, Nielsen TG, Jaspers C, Ayala DJ, Tang KW, Lombard F, Riemann L (2018) Vertical structure of plankton communities in areas of European eel larvae distribution in the Sargasso Sea. J Plankton Res 40(4):362–375.  https://doi.org/10.1093/plankt/fby025 Google Scholar
  80. Nishikawa J, Nishida S, Moku M, Hidaka K, Kawaguchi K (2001) Biomass, abundance, and vertical distribution of micronekton and large gelatinous zooplankton in the subarctic Pacific and the Bering Sea during the summer of 1997. J Oceanogr 57(3):361–375.  https://doi.org/10.1023/A:1012494931701 Google Scholar
  81. Ortman BD, Bucklin A, Pagès F, Youngbluth MJ (2010) DNA barcoding the Medusozoa using mtCOI. Deep-Sea Res II 57(24–26):2148–2156.  https://doi.org/10.1016/j.dsr2.2010.09.017 Google Scholar
  82. Otake T, Nogami K, Maruyama K (1993) Dissolved and particulate organic matter as possible food source for eel leptocephali. Mar Ecol Prog Ser 92(1–2):27–34.  https://doi.org/10.3354/meps092027 Google Scholar
  83. Pagès F, Gili J-M (1992) Siphonophores (Cnidaria: Hydrozoa) of the Benguela current (southeastern Atlantic). Sci Mar 56(S1):65–112Google Scholar
  84. Pagès F, Madin LP (2010) Siphonophores eat fish larger than their stomachs. Deep-Sea Res II 57(24–26):2248–2250.  https://doi.org/10.1016/j.dsr2.2010.09.026 Google Scholar
  85. Pagès F, Gili J-M, Bouillon J (1992) Medusae (Hydrozoa, Scyphozoa, Cubozoa) of the Benguela current (southeastern Atlantic). Sci Mar 56(S1):1–64Google Scholar
  86. Piatkowski U, Rodhouse PG, White MG, Bone DG, Symon C (1994) Nekton community of the Scotia Sea as sampled by the RMT 25 during austral summer. Mar Ecol Prog Ser 112:13–28.  https://doi.org/10.3354/meps112013 Google Scholar
  87. Pugh PR (1974) The vertical distribution of the siphonophores collected during the SOND cruise, 1965. J Mar Biol Assoc UK 54(1):25–90.  https://doi.org/10.1017/S0025315400022086 Google Scholar
  88. Pugh PR (1975) The distribution of siphonophores in a transect across the North Atlantic Ocean at 32 °N. J Exp Mar Biol Ecol 20(1):77–97.  https://doi.org/10.1016/0022-0981(75)90103-3 Google Scholar
  89. Pugh PR (1984) The diel migrations and distributions within a mesopelagic community in the North East Atlantic. 7. Siphonophores. Prog Oceanogr 13:461–489.  https://doi.org/10.1016/0079-6611(84)90016-8 Google Scholar
  90. Pugh PR (1999) Siphonophores. In: Boltovskoy D (ed) South Atlantic Zooplankton. Backhuys Publishers, Leiden, pp 467–511Google Scholar
  91. Purcell JE (1981) Dietary composition and diel feeding patterns of epipelagic siphonophores. Mar Biol 65:83–90.  https://doi.org/10.1007/BF00397071 Google Scholar
  92. Purcell JE (2003) Predation on zooplankton by large jellyfish, Aurelia labiata, Cyanea capillata and Aequorea aequorea, in Prince William Sound, Alaska. Mar Ecol Prog Ser 246:137–152.  https://doi.org/10.3354/meps246137 Google Scholar
  93. Purcell JE, Siferd TD, Marliave JB (1987) Vulnerability of larval herring (Clupea harengus pallasi) to capture by the jellyfish Aequorea victoria. Mar Biol 94(2):157–162.  https://doi.org/10.1007/BF00392927 Google Scholar
  94. Purcell JE, Breitburg DL, Decker MB, Graham WM, Youngbluth MJ, Raskoff KA (2001) Pelagic cnidarians and ctenophores in low dissolved oxygen environments: a review. Coastal hypoxia: consequences for living resources and ecosystems, coastal and estuarine studies 77–100. American Geophysical UnionGoogle Scholar
  95. R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/ Google Scholar
  96. Remsen A, Hopkins TL, Samson S (2004) What you see is not what you catch: a comparison of concurrently collected net, optical plankton counter, and shadowed image particle profiling evaluation recorder data from the Northeast Gulf of Mexico. Deep-Sea Res I 51(1):129–151.  https://doi.org/10.1016/j.dsr.2003.09.008 Google Scholar
  97. Richardson AJ, Bakun A, Hays GC, Gibbons MJ (2009) The jellyfish joyride: causes, consequences and management responses to a more gelatinous future. Trends Ecol Evol 24(6):312–322.  https://doi.org/10.1016/j.tree.2009.01.010 Google Scholar
  98. Richardson K, Bendtsen J, Christensen JT, Adjou M, Lynsgaard MM, Hilligsøe KM, Pedersen J, Torben V, Nielsen MH (2014) Localised mixing and heterogeneity in the plankton food web in a frontal region of the Sargasso Sea: implications for eel early life history. Mar Ecol Prog Ser 504:91–107.  https://doi.org/10.3354/meps10766 Google Scholar
  99. Riemann L, Alfredsson H, Hansen MM, Als TD, Nielsen TG, Munk P, Aarestrup K, Maes GE, Sparholt H, Petersen MI, Bachler M, Castongay M (2010) Qualitative assessment of the diet of European eel larvae in the Sargasso Sea resolved by DNA barcoding. Biol Lett 6(6):819–822.  https://doi.org/10.1098/rsbl.2010.0411 Google Scholar
  100. Riemann L, Nielsen TG, Kragh T, Richardson K, Parner H, Jakobsen HH, Munk P (2011) Distribution and production of plankton communities in the subtropical convergence zone of the Sargasso Sea. I. Phytoplankton and bacterioplankton. Mar Ecol Prog Ser 426:57–70.  https://doi.org/10.3354/meps09001 Google Scholar
  101. Robison BH, Reisenbichler KR, Sherlock RB (2005) Giant larvacean houses: rapid carbon transport to the deep sea floor. Science 308:1609–1611.  https://doi.org/10.1126/science.1109104 Google Scholar
  102. Saba VS, Friedrichs MAM, Carr M-E, Antoine D, Armstrong RA, Asanuma I, Aumont O, Bates NR, Behrenfeld MJ, Bennington V, Bopp L, Bruggeman J, Buitenhuis ET, Church MJ, Ciotti AM, Doney SC, Dowell M, Dunne J, Dutkiewicz S, Gregg W, Hoepffner N, Hyde KJW, Ishizaka J, Kameda T, Karl DM, Lima I, Lomas MW, Marra J, McKinley GA, Mélin F, Moore JK, Morel A, O'Reilly J, Salihoglu B, Scardi M, Smyth TJ, Tang S, Tjiputra J, Uitz J, Vichi M, Waters K, Westberry TK, Yool A (2010) Challenges of modeling depth-integrated marine primary productivity over multiple decades: a case study at BATS and HOT. Glob Biogeochem Cycles 24(3):GB3020.  https://doi.org/10.1029/2009GB003655 Google Scholar
  103. Schmidt J (1922) The breeding places of the eel. Phil Trans R Soc 211(B):179–208Google Scholar
  104. Schoth M, Tesch F-W (1982) Spatial distribution of 0-group eel larvae (Anguilla sp.) in the Sargasso Sea. Helgolander Meeresun 35:BF02006139.  https://doi.org/10.1007/BF02006139 Google Scholar
  105. Shanks AL, Walters K (1997) Holoplankton, meroplankton, and meiofauna associated with marine snow. Mar Ecol Prog Ser 156:75–86.  https://doi.org/10.3354/meps156075 Google Scholar
  106. Steinberg DK, Lomas MW, Cope JS (2012) Long-term increase in mesozooplankton biomass in the Sargasso Sea: linkage to climate and implications for food web dynamics and biogeochemical cycling. Glob Biogeochem Cycles 26(1):GB1004.  https://doi.org/10.1029/2010GB004026 Google Scholar
  107. Stone JP, Steinberg DK (2014) Long-term time-series study of salp population dynamics in the Sargasso Sea. Mar Ecol Prog Ser 510:111–127.  https://doi.org/10.3354/meps10985 Google Scholar
  108. Tanaka H, Kagawa H, Ohta H, Okuzawa K, Hirose K (1995) The first report of eel larvae ingesting rotifers. Fish Sci 61(1):171–172.  https://doi.org/10.2331/fishsci.61.171 Google Scholar
  109. Thiebot J-B, Arnould BPY, Gómez-Laich A, Ito K, Kato A, Mattern T, Mitamura H, Noda T, Poupart T, Quintana F, Raclot T, Ropert-Coudert Y, Sala JE, Seddon PJ, Sutton GJ, Yoda K, Takahashi A (2017) Jellyfish and other gelata as food for four penguin species – insights from predator-borne videos. Front Ecol Environ 15(8):437–441.  https://doi.org/10.1002/fee.1529 Google Scholar
  110. Tilves U, Purcell JE, Fuentes VL, Torrents A, Pascual M, Raya V, Gili J-M, Sabatés A (2016) Natural diet and predation impacts of Pelagia noctiluca on fish eggs and larvae in the NW Mediterranean. J Plankton Res 38(5):1243–1254.  https://doi.org/10.1093/plankt/fbw059 Google Scholar
  111. Titelman J, Gandon L, Goarant A, Nilsen T (2007) Intraguild predatory interactions between the jellyfish Cyanea capillata and Aurelia aurita. Mar Biol 152(4):745–756.  https://doi.org/10.1007/s00227-007-0721-1 Google Scholar
  112. Tomoda T, Kurogi H, Okauchi M, Kamoshida M, Imaizumi H, Jinbo T, Nomura K, Furuita H, Tanaka H (2015) Hatchery reared Japanese eel Anguilla japonica larvae ingest various organic matter formed as part of marine snow. Nippon Suisan Gakkaishi 81(4):715–721.  https://doi.org/10.2331/suisan.81.715 Google Scholar
  113. Ullman DS, Cornillon PC, Shan Z (2007) On the characteristics of subtropical fronts in the North Atlantic. J Geophys Res 112(C1).  https://doi.org/10.1029/2006JC003601
  114. Weller RA (1991) Overview of the frontal air-sea interaction experiment (FASINEX): a study of air-sea interaction in a region of strong oceanic gradients. J Geophys Res 96(C5):8501–8516.  https://doi.org/10.1029/90JC01868 Google Scholar
  115. Westerberg H, Miller MJ, Wysujack K, Marohn L, Freese M, Pohlmann J-D, Watanabe S, Tsukamoto K, Hanel R (2018) Larval abundance across the European eel spawning area: an analysis of recent and historic data. Fish Fish 19(5):890–902.  https://doi.org/10.1111/faf.12298 Google Scholar
  116. Wetzel MA, Leuchs H, Koop JHE (2005) Preservation effects on wet weight, dry weight, and ash-free dry weight biomass estimates of four common estuarine macro-invertebrates: no difference between ethanol and formalin. Helgol Mar Res 59(3):206–213.  https://doi.org/10.1007/s10152-005-0220-z Google Scholar
  117. Wu S, Liu Z, Zhang R, Delworth TL (2011) On the observed relationship between the Pacific decadal oscillation and the Atlantic multi-decadal oscillation. J Oceanogr 67(1):27–35.  https://doi.org/10.1007/s10872-011-0003-x Google Scholar
  118. Wullur S, Yosimatsu T, Tanaka H, Ohtani M, Sakakura Y, Kim H-J, Hagiwara A (2013) Ingestion by Japanese eel Anguilla japonica larvae on various minute zooplanktons. Aquac Sci 61(4):341–347.  https://doi.org/10.11233/aquaculturesci.61.341 Google Scholar
  119. Youngbluth MJ, Båmstedt U (2001) Distribution, abundance, behavior and metabolism of Periphylla periphylla, a mesopelagic coronate medusa in a Norwegian fjord. Hydrobiologia 451:321–333.  https://doi.org/10.1023/A:1011874828960 Google Scholar
  120. Zeldis JR, Davis CS, James MR, Ballara SL, Booth WE, Chang FH (1995) Salp grazing: effects on phytoplankton abundance, vertical distribution and taxonomic composition in a coastal habitat. Mar Ecol Prog Ser 126:267–283.  https://doi.org/10.3354/meps126267 Google Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung 2019

Authors and Affiliations

  1. 1.Department of Earth, Ocean and Atmospheric SciencesUniversity of British ColumbiaVancouverCanada
  2. 2.Institute for the Oceans and FisheriesUniversity of British ColumbiaVancouverCanada
  3. 3.GEOMAR, Helmholtz Centre for Ocean Research Kiel, Research division: Marine Ecology, Evolutionary Ecology of Marine FishesKielGermany
  4. 4.Department of Marine Science and Resources, College of Bioresource SciencesNihon UniversityFujisawa-shiJapan
  5. 5.Institute of Fisheries Ecology, Johann Heinrich von Thünen Institute (TI)Federal Research Institute for Rural Areas, Forestry and FisheriesBremerhavenGermany

Personalised recommendations