Advertisement

Marine Biodiversity

, Volume 49, Issue 2, pp 1027–1036 | Cite as

Habitat use of five key species of reef fish in rocky reef systems of southern Brazil: evidences of MPA effectiveness

  • Antônio Batista AndersonEmail author
  • Manuela Bernardes Batista
  • Fernando Zaniolo Gibran
  • Fabiana Cézar Félix-Hackradt
  • Carlos Werner Hackradt
  • José Antonio García-Charton
  • Sergio Ricardo Floeter
Original Paper

Abstract

Species functional behaviors amidst the food web, such as feeding ecology in ecosystems, are directly connected to their habitat preferences and use. In reef ecosystems, groupers and sea bass are considered key species, as top-down controllers, regulating the trophic levels on which they feed. Moreover, they are a diversified group of actinopterygian fishes, ranging from 7 to 250 cm of total length and inhabiting many types of reef habitats, from shallow waters up to 200 m deep. Due to the exceptional ecological and commercial importance of groupers and sea bass to the rocky reef systems of southwestern Atlantic and considering the small amount of information on their behavior and habitat use available for this particular region, three questions have emerged. First, how are the species spatially distributed considering the topography complexity of their environment? Second, do large Epinephelids and small Serranids have the same use of the water column, when foraging (e.g., position related to the substrate)? Third, do marine protected areas influence the distributional patterns of both families? To answer these questions, we assessed the spatial distribution and habitat use of two dominant species of groupers (Epinephelus marginatus, Mycteroperca acutirostris) and three species of sea bass (Diplectrum radiale and Serranus flaviventris and S. baldwini), using underwater visual census at Santa Catarina State, southern Brazil, during the austral summers of 2010 and 2011. All of the five sympatric species studied are directly associated with specific topographic characteristics that may be related to shelter as well as to reproduction and feeding. Except for M. acutirostris, which was mainly recorded foraging in the water column, all the remaining species are benthic dwellers. Significant evidences of effectiveness advocate that Arvoredo Marine Biological Reserve has critical importance as a refuge for heavily targeted reef species in southern Brazil, such as E. marginatus and M. acutirostris. The establishment of more protected marine areas that encompass the nursery areas near AR, along with proper enforcement, is critical to the protection of endangered and vulnerable marine species. The present work has contributed to the knowledge of habitat use and partitioning of some key reef fishes, especially target species, which is critical to effective conservation measures, including the design and management of MPAs.

Keywords

Groupers Sea bass Arvoredo Biological Marine Reserve Top predators MPA management 

Notes

Acknowledgments

We thank the research teams from the Ecology and Hydrology Laboratories, University of Murcia, Spain; and the Marine Macroecology and Biogeography Lab, Universidade Federal de Santa Catarina, Brazil. We thank Projeto MAArE – Portal de Monitoramento Marinho (http://maare.skymarket.com.br) (via Barbara Segal, Ana Flora de Oliveira, Edson Faria Júnior, Marcio Soldateli), and Project Thermal tolerance, species distribution and the impact of climate warming (PI: Sergio Floeter, CNPq 402053/2012-5) for the temperature data. We thank Tatiana M. Pereira, LabPEIXE - Universidade de Vila Velha, for comments.

Funding

Financial support from the Bank Bilbao Vizcaya (Fundación BBVA), Spain, and Coordenação de Aprimoramento Pessoal de Nível Superior - CAPES - Brazil has allowed this work to be carried out. This study was funded by Bank Bilbao Vizcaya (Fundación BBVA), Spain: 5ª Convocatoria de Ayudas a la investigación en Ecología y Biología de la Conservación (Proyecto Evaluación de la dinámica poblacional y la movilidad para la conservación de los meros: Comparación entre reservas marinas de interés pesquero y reservas biológicas, P.I. García Charton, José Antonio, Universidad de Murcia, Q-3018001B), Coordenação de Aprimoramento Pessoal de Nível Superior - CAPES - Brazil and FAPESP grant 98/10340-1, 05/51855-0, 05/51856-6, and 2008/02861-5 to FZG.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Sampling and field studies

All necessary permits for sampling and observational field studies have been obtained by the authors from the competent authorities.

Supplementary material

12526_2018_893_MOESM1_ESM.docx (17 kb)
ESM 1 (DOCX 17 kb)

References

  1. Aburto-Oropeza O, Erisman B, Galland GR, Mascareñas-Osorio I, Sala E, Ezcurra E (2011) Large recovery of fish biomass in a no-take marine reserve. PLoS One 6:e23601CrossRefGoogle Scholar
  2. Almany GR (2004) Priority effects in coral reef fish communities of the Great Barrier Reef. Ecology 85:2872–2880.  https://doi.org/10.1890/03-3166 CrossRefGoogle Scholar
  3. Almany GR, Webster MS (2004) Odd species out as predators reduce diversity of coral-reef fishes. Ecology 85:2933–2937.  https://doi.org/10.1890/03-3150 CrossRefGoogle Scholar
  4. Anderson AB (2017) Peixes tropicais no seu limite de distribuição: dinâmica temporal da ictiofauna recifal no Sul do Brasil. Ph.D. thesis. Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brasil-202 pGoogle Scholar
  5. Anderson A, Bonaldo R, Barneche D, Hackradt C, Félix-Hackradt F, García-Chartón J, Floeter S (2014) Recovery of grouper assemblages indicates effectiveness of a marine protected area in southern Brazil. Mar Ecol Prog Ser 514:207–215CrossRefGoogle Scholar
  6. Anderson AB, Carvalho-Filho A, Morais RA, Nunes LT, Quimbayo JP, Floeter SR (2015) Brazilian tropical fishes in their southern limit of distribution: checklist of Santa Catarina’s rocky reef ichthyofauna, remarks and new records. 2015:11.  https://doi.org/10.15560/11.4.1688
  7. Anderson AB, Salas EM, Rocha LA, Floeter SR (2017) The recent colonization of south Brazil by the Azores chromis Chromis limbata. J Fish Biol 91:558–573.  https://doi.org/10.1111/jfb.13363 CrossRefGoogle Scholar
  8. Basei MA, Siga O Jr, Machiavelli A, Mancini F (1992) Evolução tectônica dos terrenos entre os Cinturões Ribeira e Dom Feliciano (PR-SC). Rev Bras Geosci 22:216–221CrossRefGoogle Scholar
  9. Bonaldo RM, Krajewski JP, Sazima I (2004) Does the association of young fishes with jellyfishes protect from predation? A report on a failure case due to damage to the jellyfish. Neotropical Ichthyology 2:103–105CrossRefGoogle Scholar
  10. Carter J, Marrow GJ, Pryor V (1994) Aspects of the ecology and reproduction of Nassau grouper (Epinephelus striatus) off the coast of Belize, Central AmericaGoogle Scholar
  11. Cheminée A et al (2017) Shallow rocky nursery habitat for fish: spatial variability of juvenile fishes among this poorly protected essential habitat. Mar Pollut Bull 119:245–254.  https://doi.org/10.1016/j.marpolbul.2017.03.051 CrossRefGoogle Scholar
  12. Clarke K, Warwick R (1994) An approach to statistical analysis and interpretation. In: Change in Marine Communities, vol 2, pp 117–143Google Scholar
  13. Connell JH (1980) Diversity and the coevolution of competitors, or the ghost of competition past. Oikos 35:131–138.  https://doi.org/10.2307/3544421 CrossRefGoogle Scholar
  14. Craig MT, Sadovy de Mitcheson Y, Heemstra PC (2011) Groupers of the world. Published by NISC, Grahamstown 402pGoogle Scholar
  15. Derbal F, Kara M (1995) Habitat et comportement du mérou Epinephelus marginatus dans la région d'Annaba (Algérie). Cah Biol Mar 36:29–32Google Scholar
  16. Diehl FL, Horn Filho N (1996) Compartimentação geológico-geomorfológica da zona litorânea e planície costeira do Estado de Santa Catarina Notas Técnicas 9:39–50Google Scholar
  17. Faraway JJ (2016) Extending the linear model with R: generalized linear, mixed effects and nonparametric regression models, vol 124. CRC press, Boca RatonCrossRefGoogle Scholar
  18. Figueiredo J, Menezes N (1980) Manual de peixes do sudeste do Brasil IV. Teleostei, Museu de Zoologia da Universidade de São PauloGoogle Scholar
  19. Floeter SR, Guimarães RZP, Rocha LA, Ferreira CEL, Rangel CA, Gasparini JL (2001) Geographic variation in reef-fish assemblages along the Brazilian coast. Glob Ecol Biogeogr 10:423–431.  https://doi.org/10.1046/j.1466-822X.2001.00245.x CrossRefGoogle Scholar
  20. Floeter SR, Krohling W, Gasparini JL, Ferreira CEL, Zalmon IR (2007) Reef fish community structure on coastal islands of the southeastern Brazil: the influence of exposure and benthic cover. Environ Biol Fish 78:147–160.  https://doi.org/10.1007/s10641-006-9084-6 CrossRefGoogle Scholar
  21. Freitas MO, Leão de Moura R, Bastos Francini-Filho R, Viviana Minte-Vera C (2011) Spawning patterns of commercially important reef fish (Lutjanidae and Serranidae) in the tropical western South Atlantica. 75:12.  https://doi.org/10.3989/scimar.2011.75n1135
  22. Froese R, Pauly D (2017) Fishbase. http://www.fishbase.org. Accessed 08/21/2017
  23. García-Charton JA, Pérez-Ruzafa Á (2001) Spatial pattern and the habitat structure of a Mediterranean rocky reef fish local assemblage. Mar Biol 138:917–934.  https://doi.org/10.1007/s002270000524 CrossRefGoogle Scholar
  24. García-Charton JA, Pérez-Ruzafa Á, Sánchez-Jerez P, Bayle-Sempere JT, Reñones O, Moreno D (2004) Multi-scale spatial heterogeneity, habitat structure, and the effect of marine reserves on Western Mediterranean rocky reef fish assemblages. Mar Biol 144:161–182.  https://doi.org/10.1007/s00227-003-1170-0 CrossRefGoogle Scholar
  25. García-Charton JA et al (2008) Effectiveness of European Atlanto-Mediterranean MPAs: do they accomplish the expected effects on populations, communities and ecosystems? J Nat Conserv 16:193–221.  https://doi.org/10.1016/j.jnc.2008.09.007 CrossRefGoogle Scholar
  26. Giakoumi S, Scianna C, Plass-Johnson J, Micheli F, Grorud-Colvert K, Thiriet P., Claudet J, Di Carlo G, Di Franco A, Gaines S, García-Charton JA, Lubchenco J, Reimer J Guidetti P (2017) Marine protected areas in the crowded mediterranean sea: assessing ecological effects of full and partial protection. Sci Rep 7:8940.  https://doi.org/10.1038/s41598-017-08850-w
  27. Gibran FZ (2007) Activity, habitat use, feeding behavior, and diet of four sympatric species of Serranidae (Actinopterygii: Perciformes) in southeastern Brazil. Neotrop Ichthyol 5:387–398CrossRefGoogle Scholar
  28. Gibran FZ, Moura RL (2012) The structure of rocky reef fish assemblages across a nearshore to coastal islands' gradient in southeastern Brazil. Neotrop Ichthyol 10:369–382CrossRefGoogle Scholar
  29. Harmelin J-G, Harmelin-Vivien M (1999) A review on habitat, diet and growth of the dusky grouper Epinephelus marginatus (Lowe, 1834). Marine Life 9:11–20Google Scholar
  30. Kline RJ, Khan IA, Holt GJ (2011) Behavior, color change and time for sexual inversion in the protogynous grouper (Epinephelus adscensionis). PLoS One 6:e19576CrossRefGoogle Scholar
  31. La Mesa G, Louisy P, Vacchi M (2002) Assessment of microhabitat preferences in juvenile dusky grouper (Epinephelus marginatus) by visual sampling. Mar Biol 140:175–185.  https://doi.org/10.1007/s002270100682 CrossRefGoogle Scholar
  32. Legendre P, Birks HJB (2012) From classical to canonical ordination. In: Birks HJB, Lotter AF, Juggins S, Smol JP (eds) Tracking environmental change using lake sediments: data handling and numerical techniques. Springer Netherlands, Dordrecht, pp 201–248.  https://doi.org/10.1007/978-94-007-2745-8_8 CrossRefGoogle Scholar
  33. Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280.  https://doi.org/10.1007/s004420100716 CrossRefGoogle Scholar
  34. Legendre P, Legendre LF (2012) Numerical ecology, vol 24, 2nd English edn. Elsevier, AmsterdamGoogle Scholar
  35. Machado LF, Bertoncini ÁA, Hostim-Silva M, Barreiros JP (2003) Habitat use by the juvenile dusky grouper Epinephelus marginatus and its relative abundance, in Santa Catarina, Brazil. Aqua J Ichthyol Aquat Biol 6:133–138Google Scholar
  36. Medeiros R, Polette M, Vizinho S, Macedo C, Borges J (1997) Diagnóstico sócio-econômico e cultural nas comunidades pesqueiras artesanais do litoral centro-norte do estado de Santa Catarina Notas técnicas da FACIMAR 1:33–42Google Scholar
  37. Neves LM, Teixeira-Neves TP, Pereira-Filho GH, Araújo FG (2016) The farther the better: effects of multiple environmental variables on reef fish assemblages along a distance gradient from river influences. PLoS One 11:e0166679CrossRefGoogle Scholar
  38. Oksanen J, Kindt R, Legendre P, O’Hara B, Stevens MHH, Oksanen MJ, Suggests M (2007) The vegan package. Community ecology package 10:631–637Google Scholar
  39. Oksanen J et al. (2010) Vegan: community ecology package. R package, version 1.18–2/r1135Google Scholar
  40. Olsen DA, LaPlace J (1979) A study of a Virgin Islands grouper fishery based on a breeding aggregationGoogle Scholar
  41. Parrish JD (1987) The trophic biology of snappers and groupers. In: Tropical snappers and groupers: Biology and fisheries management, pp 405–463Google Scholar
  42. Petersen CW, Fischer EA (1986) Mating system of the hermaphroditic coral-reef fish, Serranus baldwini. Behav Ecol Sociobiol 19:171–178.  https://doi.org/10.1007/bf00300857 Google Scholar
  43. R Core Team (2017) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/
  44. Sadovy de Mitcheson Y et al (2013) Fishing groupers towards extinction: a global assessment of threats and extinction risks in a billion dollar fishery. Fish Fish 14:119–136.  https://doi.org/10.1111/j.1467-2979.2011.00455.x CrossRefGoogle Scholar
  45. Sadovy Y, Colin PL, Domeier ML (1994) Aggregation and spawning in the tiger grouper, Mycteroperca tigris (Pisces: Serranidae). Copeia 1994:511–516.  https://doi.org/10.2307/1447001 CrossRefGoogle Scholar
  46. Sazima I (1986) Similarities in feeding behaviour between some marine and freshwater fishes in two tropical communities. J Fish Biol 29:53–65CrossRefGoogle Scholar
  47. Schmitt RJ, Coyer JA (1982) The foraging ecology of sympatric marine fish in the genus Embiotoca (Embiotocidae): importance of foraging behavior in prey size selection. Oecologia 55:369–378.  https://doi.org/10.1007/bf00376925 CrossRefGoogle Scholar
  48. Schoener TW (1974) Resource partitioning in ecological communities. Science 185:27–39CrossRefGoogle Scholar
  49. Sluka RD, Sullivan KM (1998) The influence of spear fishing on species composition and size of groupers on patch reefs in the upper Florida Keys. Fish Bull 96:388–392Google Scholar
  50. Sluka R, Chiappone M, Sullivan K (1994) Comparison of juvenile grouper populations in southern Florida and the central Bahamas. Bull Mar Sci 54:871–880Google Scholar
  51. Sluka R, Chiappone M, Sullivan K, Wright R (1996) Habitat preferences of groupers in the Exuma Cays Bahamas. J Sci 4:8–14Google Scholar
  52. Smith CL (1961) Synopsis of biological data on groupers (Epinephelus and allied genera) of the western North Atlantic, vol 23. Fisheries Division, Biology Branch, Food and Agriculture Organization of the United NationsGoogle Scholar
  53. Sokal RR, Rohlf FJ (1962) The comparison of dendrograms by objective methods. Taxon 11:33–40.  https://doi.org/10.2307/1217208 CrossRefGoogle Scholar
  54. Spedicato M, Carbonara P, Lembo G (2005) Insight into the homing behaviour of the dusky grouper (Epinephelus marginatus Lowe, 1834) around the island of Ustica, Italy. In: Proceedings of the Fifth Conference on Fish Telemetry held in Europe, Aquatic telemetry: advances and applications, pp 103–109Google Scholar
  55. ter Braak CJF (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67:1167–1179.  https://doi.org/10.2307/1938672 CrossRefGoogle Scholar
  56. ter Braak CJF (1994) Canonical community ordination. Part I: basic theory and linear methods. Écoscience 1:127–140.  https://doi.org/10.1080/11956860.1994.11682237 CrossRefGoogle Scholar
  57. Underwood AJ (1997) Experiments in ecology: their logical design and interpretation using analysis of variance. Cambridge University Press, CambridgeGoogle Scholar
  58. Wagner CE, Harmon LJ, Seehausen O (2012) Ecological opportunity and sexual selection together predict adaptive radiation. Nature 487:366–369 http://www.nature.com/nature/journal/v487/n7407/abs/nature11144.html#supplementary-information CrossRefGoogle Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Antônio Batista Anderson
    • 1
    Email author
  • Manuela Bernardes Batista
    • 2
  • Fernando Zaniolo Gibran
    • 3
  • Fabiana Cézar Félix-Hackradt
    • 4
  • Carlos Werner Hackradt
    • 4
  • José Antonio García-Charton
    • 5
  • Sergio Ricardo Floeter
    • 1
  1. 1.Laboratório de Biogeografia e Macroecologia Marinha, Centro de Ciências Biológicas, Departamento de Ecologia e ZoologiaUFSCFlorianópolisBrazil
  2. 2.Laboratório de Ficologia, Centro de Ciências Biológicas, Departamento de BotânicaUFSCFlorianópolisBrazil
  3. 3.Centro de Ciências Naturais e HumanasUniversidade Federal do ABC, UFABCSão Bernardo do CampoBrazil
  4. 4.Centro de Formação em Ciências AmbientaisUniversidade Federal do Sul da Bahia (UFSB)Porto SeguroBrazil
  5. 5.Departamento de Ecología e HidrologíaUniversidad de Murcia/UMUMurciaSpain

Personalised recommendations