Marine Biodiversity

, Volume 49, Issue 2, pp 1061–1066 | Cite as

First record of the stalked jellyfish Haliclystus tenuis Kishinouye, 1910 (Cnidaria: Staurozoa) in Atlantic waters

  • Sabine HolstEmail author
  • Silke Laakmann
Short Communication


Combined morphological and molecular genetic analyses confirmed the occurrence of the stalked jellyfish Haliclystus tenuis Kishinouye, 1910 on the coast of the island Helgoland (North Sea, German Bight). The species was previously reported in Japan and China only, and it was assumed that its geographical range is limited to the northwest Pacific. Possibly, the species was overlooked in Atlantic waters because of its morphological similarity with the Atlantic species Haliclystus octoradiatus Clark, 1863. However, the low intra-specific variation in mitochondrial gene cytochrome c oxidase subunit I (COI) does not indicate a geographic separation of Atlantic and Pacific specimens and may indicate a non-native introduction.


Stauromedusae Haliclystidae Integrative taxonomy Species identification Neobiota 



We thank Karen Jeskulke for her assistance in sampling and laboratory work. We gratefully appreciate the scientific guest research service provided by the Biological Institute Helgoland (BAH, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Science). We thank two anonymous reviewers for their comments improving the manuscript. This is publication number 52 from the Senckenberg am Meer Metabarcoding and Molecular Laboratory.


This study was funded by the Federal Ministry of Education and Research of Germany (BMBF Grant No. 03F0499A and 03F0664A) and the Land Niedersachsen.

Compliance with ethical standards

Sampling and field studies

All necessary permits for sampling and observational field studies have been obtained by the authors from the competent authorities and are mentioned in the acknowledgements, if applicable.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.


  1. Carlgren O (1935) Über eine neue Südafrikanische Lucernariidae, Depastromorpha africana n. gen., n. sp., nebst Bemerkungen über den Bau und die Systematik dieser Tiergruppe. K Sven Vetensk Akad Handl 15:1–24Google Scholar
  2. Castro MC, Fileman TW, Hall-Spencer JM (2017) Invasive species in the Northeastern and Southwestern Atlantic Ocean: a review. Mar Pollut Bull 116:41–47CrossRefGoogle Scholar
  3. Clark HJ (1863) Prodromus of the history, structure, and physiology of the order Lucernariae. J Boston Soc Nat Hist 7:531–567Google Scholar
  4. Collins AG, Daly M (2005) A new deepwater species of Stauromedusae, Lucernaria janetae (Cnidaria, Staurozoa, Lucernariidae), and a preliminary investigation of stauromedusan phylogeny based on nuclear and mitochondrial rDNA data. Biol Bull 208:221–230CrossRefGoogle Scholar
  5. Collins AG, Schuchert P, Marques AC, Jankowski T, Medina M, Schierwater B (2006) Medusozoan phylogeny and character evolution clarified by new large and small subunit rDNA data and an assessment of the utility of phylogenetic mixture models. Syst Biol 55:97–115CrossRefGoogle Scholar
  6. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797CrossRefGoogle Scholar
  7. Faasse MA, Waajen S (2011) De steelkwallen van Nederland (Cnidaria: Staurozoa). Nederlandse Faunistische Mededelingen 35:61–67Google Scholar
  8. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  9. Folmer OM, Black W, Hoen R, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299Google Scholar
  10. Gosse PH (1858) Synopsis of the families, genera, and species of the British actiniae. Ann Mag Nat Hist 3:414–419CrossRefGoogle Scholar
  11. Hirano YM (1986) Species of Stauromedusae from Hokkaido, with notes on their metamorphosis. J Fac Sci Hokkaido Univ 24:182–201Google Scholar
  12. Hirano YM (1997) A review of a supposedly circumboreal species of stauromedusa, Haliclystus auricula (Rathke, 1806). In: den Hartog JC (ed) Proceedings of the 6th international conference on coelenterate biology. The Netherlands. Nationaal Naturhistorisch Museum, Noordwijkerhout, Leiden, pp 247–252Google Scholar
  13. Kahn AS, Matsumoto GI, Hirano YM, Collins AG (2010) Haliclystus californiensis, a “new” species of stauromedusa (Cnidaria: Staurozoa) from the northeast Pacific, with a key to the species of Haliclystus. Zootaxa 2518:49–59CrossRefGoogle Scholar
  14. Kayal E, Roure B, Philippe H, Collins AG, Lavrov DV (2013) Cnidarian phylogenetic relationships as revealed by mitogenomics. BMC Evol Biol 13:5CrossRefGoogle Scholar
  15. Kind B, Kuhlenkamp R (2016) Discovery of the non-indigenous bryozoan Smittoidea prolifica Osburn, 1952 near Helgoland: first record in 2011 for the German North Sea. Mar Biodivers.
  16. Kishinouye K (1893) Mushi-kurage, Depastrum inabai n. sp. Zool Mag 5:416–419Google Scholar
  17. Kishinouye K (1910) Some medusae of Japanese waters. J Coll Sci Imp Univ Tokyo 27:1–35Google Scholar
  18. Kramp PL (1961) Synopsis of the medusae of the world. J Mar Biol Assoc UK 40:292–303CrossRefGoogle Scholar
  19. Markert A, Wehrmann A, Kroencke I (2010) Recently established Crassostrea-reefs versus native Mytilus-beds: differences in ecosystem engineering affects the macrofaunal communities (Wadden Sea of Lower Saxony, southern German Bight). Biol Invasions 12:15–32CrossRefGoogle Scholar
  20. Mills CE, Hirano YM (2007) Stauromedusae. In: Denny MW, Gaines SD (eds) Encyclopedia of Tidepools and Rocky Shores. University of California Press, Berkeley, pp 541–543Google Scholar
  21. Miranda LS, Morandini AC, Marques AC (2009) Taxonomic review of Haliclystus antarcticus Pfeffer, 1889 (Stauromedusae, Staurozoa, Cnidaria), with remarks on the genus Haliclystus Clark, 1863. Polar Biol 32:1507–1519CrossRefGoogle Scholar
  22. Miranda LS, Collins AG, Marques AC (2010) Molecules clarify a cnidarian life cycle—the “hydrozoan” Microhydrula limopsicola is an early life stage of the staurozoan Haliclystus antarcticus. PLoS One 5:e10182CrossRefGoogle Scholar
  23. Miranda LS, Morandini AC, Marques AC (2012) Do Staurozoa bloom? A review of stauromedusan population biology. Hydrobiologia 690:57–67CrossRefGoogle Scholar
  24. Miranda LS, Collins AG, Hirano YM, Mills CE, Marques AC (2016a) Comparative internal anatomy of Staurozoa (Cnidaria), with functional and evolutionary inferences. Peer J 4:e2594CrossRefGoogle Scholar
  25. Miranda LS, Hirano YM, Mills CE, Falconer A, Fenwick D, Marques AC, Collins AG (2016b) Systematics of stalked jellyfishes (Cnidaria: Staurozoa). Peer J 4:e1951CrossRefGoogle Scholar
  26. Miranda LS, Mills CE, Hirano YM, Collins AG, Marques AC (2017a) A review of the global diversity and natural history of stalked jellyfishes (Cnidaria, Staurozoa). Mar Biodivers.
  27. Miranda LS, Branch GM, Collins AG, Hirano YM, Marques AC, Griffiths CL (2017b) Stalked jellyfishes (Cnidaria: Staurozoa) of South Africa, with the description of Calvadosia lewisi sp. nov. Zootaxa 4227:369–389CrossRefGoogle Scholar
  28. Moehler J, Wegner KM, Reise K, Jacobsen S (2011) Invasion genetics of Pacific oyster Crassostrea gigas shaped by aquaculture stocking practices. J Sea Res 66:256–262CrossRefGoogle Scholar
  29. Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New YorkGoogle Scholar
  30. Osburn RC (1952) Bryozoa of the Pacific coast of America, part 2, Cheilostomata-Ascophora. Allan Hancock Pacific Expeditions 14:271–611Google Scholar
  31. Otto JJ (1976) Early development and planula movement in Haliclystus (Scyphozoa: Stauromedusae). In: Mackie GO (ed) Coelenterates ecology and behavior. Springer, Boston, pp 319–329CrossRefGoogle Scholar
  32. Pfeffer G (1889) Zur Fauna von Süd-Georgien. Jahrb Hamburg Wiss Anst 6:37–55Google Scholar
  33. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425Google Scholar
  34. Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved PCR primers. Ann Entomol Soc Am 87:651–701CrossRefGoogle Scholar
  35. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690CrossRefGoogle Scholar
  36. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefGoogle Scholar
  37. Thiel M, Hinojosa IA, Joschko T, Gutow L (2011) Spatio-temporal distribution of floating objects in the German Bight (North Sea). J Sea Res 65:368–379CrossRefGoogle Scholar
  38. Thunberg CP (1793) Tekning och beskrifning på en stor ostronsort ifrån Japan. Kongliga Vetenskaps Academiens Nya Handlingar 14:140–142Google Scholar
  39. Zapata F, Goetz FE, Smith SA, Howison M, Siebert S, Church SH, Sanders SM, Ames CL, McFadden CS, France SC, Daly M, Collins AG, Haddock SH, Dunn CW, Cartwright P (2015) Phylogenomic analyses support traditional relationships within Cnidaria. PLoS One 10:e0139068CrossRefGoogle Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Senckenberg am Meer, German Center for Marine Biodiversity ResearchHamburgGermany
  2. 2.Senckenberg am Meer, German Center for Marine Biodiversity ResearchWilhelmshavenGermany

Personalised recommendations