Marine Biodiversity

, Volume 48, Issue 4, pp 2151–2163 | Cite as

Sponges associated with coralligenous formations along the Apulian coasts

  • C. Longo
  • F. Cardone
  • C. Pierri
  • M. Mercurio
  • S. Mucciolo
  • C. Nonnis Marzano
  • G. Corriero
Original Paper


Sponge assemblages associated with coralligenous outcrops were studied with the aim of describing and comparing their composition, morphological features and distribution at different depths (shallow vs. deep) along the Apulian coasts. In addition, image analysis enabled the description of the main features of coralligenous outcrops and the detection of structuring species. The paper provides a significant contribution in terms of supplying new taxa of sponges associated to coralligenous assemblages and emphasising the importance of invertebrates in realising calcareous constructions. Most of the new finding came from deep sites, thus underlining the need to improve taxonomic studies on coralligenous communities at greater depths. A total of 153 taxa of sponges were recorded: 4 Calcarea, 6 Homoscleromorpha and 143 Demospongiae. Two species, Clathria (Microciona) macrochela and Thoosa armata, are new records for the Italian sponge fauna, with C. (M.) macrochela representing a new record for the whole Mediterranean. New findings for the Ionian and Adriatic Seas totalled 25 and 8 species, respectively. Thirty-nine species are endemic for the Mediterranean. Data analyses clustered sites into two groups, separated according to the depth. Deep sites, characterised by animal dominance, exhibit a heterogeneous substrate texture richer in cavities than the shallow and homogeneous algal ones. Differences in sponge species composition also correspond to differences in the distribution of sponge growth forms, with the insinuating cryptic species more abundant in deeper communities. Ten of 15 sponge species included in national and international wildlife protection laws and policy have been detected in the present study.


Coralligenous community Bathymetric range Structuring species Ionian and Adriatic Seas Sponge-growing form 



The authors wish to thank Dr. Robert Domin for critical reading and the English review of the manuscript. This work was partially funded by CoNISMa as part of Marine Strategy Framework Directive.


  1. AA VV (2014) Biocostruzioni Marine in Puglia (BIOMAP). P.O FESR 2007/2013- ASSE IV. Linea 4.4- Interventi per la rete ecologica. Final technical reportGoogle Scholar
  2. Annicchiarico R (1980) Poriferi del fondo coralligeno dei mari della Puglia. Thalass Salent 10:113–120Google Scholar
  3. Balata D, Piazzi L, Cecchi E, Cinelli F (2005) Variability of Mediterranean coralligenous assemblages subject to local variation in sediment deposition. Mar Environ Res 60:403–421. doi: 10.1016/j.marenvres.2004.12.005 CrossRefPubMedGoogle Scholar
  4. Baldacconi R, Corriero G (2009) Effects of the spread of the alga Caulerpa racemosa Var. cylindracea on the sponge assemblage from coralligenous concretions of the Apulian coast (Ionian Sea, Italy). Mar Ecol 30:337–345CrossRefGoogle Scholar
  5. Ballesteros E (2006) Mediterranean coralligenous assemblages: a synthesis of present knowledge. Oceanogr Mar Biol Annu Rev 44:123–195Google Scholar
  6. Ballesteros E, Zabala M (1993) El bentos: el marc físic. In: Alcover JA et al (eds) Història Natural de l’Arxipèlag de Cabrera. CSIC-Ed. Moll, Palma de Mallorca, pp 663–685Google Scholar
  7. Barcelona Convention (1978). Convention for the protecion of the Mediterranean Sea against Pollution, Annex II and III. February 12, 1978. Accessed 5 Dec 2016 at
  8. Bern Convention (1979). Convention on the conservation of European wildlife and natural habitats. September 19, 1979. Bern, SwitzerlandGoogle Scholar
  9. Bertolino M, Cerrano C, Bavestrello G et al (2013) Diversity of Porifera in the Mediterranean coralligenous accretions, with description of a new species. ZooKeys 336:1–37CrossRefGoogle Scholar
  10. Bertolino M, Calcinai B, Cattaneo-Vietti R et al (2014) Stability of the sponge assemblage of the Mediterranean coralligenous along a millennial span of time. Mar Ecol 35:149–159. doi: 10.1111/maec.12063 CrossRefGoogle Scholar
  11. Boudouresque CF (2004) Marine biodiversity in the Mediterranean: status of species, populations and communities. Scientific Reports of Port-Cros National Park 20:97–146Google Scholar
  12. Boury-Esnault N, Rützler K (1997) Thesaurus of sponge morphology. Smithsonian Institution Press, Washington D.C. doi: 10.5479/si.00810282.596 CrossRefGoogle Scholar
  13. Calcinai B, Bertolino M, Bavestrello G et al (2015) Comparison between the sponge fauna living outside and inside the coralligenous bioconstruction: a quantitative approach. Mediterr Mar Sci 16(2):413–418CrossRefGoogle Scholar
  14. Campiani E, Foglini F, Fraschetti S et al (2014) Conservation and management of coralligenous habitat: experience from the BIOMAP Project. Habitat mapping for conservation and management purposes 5th - 9th May, 2014 Lorne, Victoria, AustraliaGoogle Scholar
  15. Cánovas Molina AC, Montefalcone M, Vassallo P et al (2016) Combining literature review, acoustic mapping and in situ observations: an overview of coralligenous assemblages in Liguria (NW Mediterranean Sea). Sci Mar 80(1). doi: 10.3989/scimar.04235.23A
  16. Cerrano C, Bavestrello G, Bianchi CN et al (2001) The role of sponge bioerosion in Mediterranean coralligenous accretion. In: Faranda FM et al (eds) Mediterranean ecosystems: structures and processes. Springer, Italia, pp 235–240CrossRefGoogle Scholar
  17. Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143CrossRefGoogle Scholar
  18. CMEMS, Copernicus Marine Environment Monitoring Service 2016. Accessed 10 Dec 2016
  19. Cocito S, Lombardi C (2007) Competitive interactions in the coralligenous assemblages of S.M. Leuca (Ionian Sea). Biol Mar Mediterr 14(2):176–177Google Scholar
  20. Coll M, Piroddi C, Steenbeek J et al (2010) The biodiversity of the Mediterranean Sea: estimates, patterns, and threats. PLoS ONE 5(8):e11842. doi: 10.1371/journal.pone.0011842 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Corriero G, Scalera Liaci L (1997) Cliona parenzani n. sp. (Porifera, Hadromerida) from the Ionian Sea. Ital J Zool 64(1):69–73CrossRefGoogle Scholar
  22. Corriero G, Scalera Liaci L, Ruggiero D, Pansini M (2000) The sponge community of a semi submerged Mediterranean cave. Mar Ecol 21(1):85–96CrossRefGoogle Scholar
  23. Corriero G, Gherardi M, Giangrande A et al (2004) Inventory and distribution of hard bottom fauna from the marine protected area of Porto Cesareo (Ionian Sea): Porifera and Polychaeta. Ital J Zool 71:237–245CrossRefGoogle Scholar
  24. Dring MJ (1981) Chromatic adaptation of photosynthesis in benthic marine algae: an examination of its ecological significance using a theoretical model. Limnol Oceanogr 26:271–284CrossRefGoogle Scholar
  25. Ferdeghini F, Acunto S, Cocito S, Cinelli F (2000) Variability at different spatial scales of a coralligenous assemblage at Giannutri Island (Tuscan archipelago, northwest Mediterranean). Hydrobiologia 440:27–36. doi: 10.1023/A:1004124423718 CrossRefGoogle Scholar
  26. Fredj G, Meinardi M, Manas R (2002) Medifaune: une banque de données sur la faune marine méditerranéenne. In: Fredj G (ed) Premières journées d’étude des producteurs français de banque de données biologiques factuelles. D’Olmo, Saint Laurent du Var, pp 115–145Google Scholar
  27. Gerovasileiou V, Voultsiadou E (2012) Marine caves of the Mediterranean Sea: a sponge biodiversity reservoir within a biodiversity hotspot. PLoS ONE 7(7):e39873CrossRefGoogle Scholar
  28. Giakoumi S, Sini M, Gerovasileiou V et al (2013) Ecoregion-based conservation planning in the Mediterranean: dealing with large-scale heterogeneity. PLoS ONE 8(10):e76449CrossRefGoogle Scholar
  29. Gili JM, Ballesteros E (1991) Structure of cnidarian populations in Mediterranean sublittoral benthic communities as a result of adaptation to different environmental conditions. Oecol Aquat 10:243–254Google Scholar
  30. Hong JS (1980) Étude faunistique d’un fond de concrétionnement de type coralligène soumis à un gradient de pollution en Méditerranée nord-occidentale (Golfe de Fos). PhD Thesis, University of Aix-Marseille IIGoogle Scholar
  31. Hong JS (1982) Contribution à l’étude des peuplements d’un fond coralligène dans la région marseillaise en Méditerranée Nord-Occidentale. Bull Korean Ocean Res Dev Inst 4:27–51Google Scholar
  32. Kersting DK, Linares C (2012) Cladocora caespitosa biocostructions in the Columbretes Islands marine reserve (Spain, NW Mediterranean): distribution, size structure and growth. Mar Ecol 33:427–436CrossRefGoogle Scholar
  33. Kipson S, Fourt M, Teixidò N et al (2011) Rapid biodiversity assessment and monitoring method for highly diverse benthic communities: a case study of Mediterranean coralligenous outcrops. PLoS ONE 6(11):e27103CrossRefGoogle Scholar
  34. Labate M (1967) Poriferi del coralligeno adriatico pugliese. Boll Zool 34:127CrossRefGoogle Scholar
  35. Laborel J (1961) Le concretionnement algal “coralligène” et son importance géomorphologique en Méditerranée. Rec Trav St Mar Endoume 23(37):37–60Google Scholar
  36. Laborel J (1987) Marine biogenic constructions in the Mediterranean. Scientific Reports of Port-Cros National Park 13:97–126Google Scholar
  37. Laubier L (1966) Le coralligène des Albères: monographie biocénotique. Ann Inst Oceanogr (Paris) 43:139–316Google Scholar
  38. Lüning K (1981) Light. In: Lobban CS, Wynne MJ (eds) The biology of seaweeds. Blackwell, London, pp 326–355Google Scholar
  39. Martí R, Uriz MJ, Ballesteros E, Turon X (2004) Benthic assemblages in two Mediterranean caves: species diversity and coverage as a function of abiotic parameters and geographic distance. J Mar Biol Ass UK 84:557–572CrossRefGoogle Scholar
  40. Martí R, Uriz MJ, Ballesteros E, Turon X (2005) Seasonal variation in structure of three algal communities under different light conditions. Estuar Coast Shelf Sci 64:613–622CrossRefGoogle Scholar
  41. Martin CS, Giannoulaki M, De Leo F et al (2014) Coralligenous and maërl habitats: predictive modelling to identify their spatial distributions across the Mediterranean Sea. Sci Rep 4:50–73. doi: 10.1038/srep05073 CrossRefGoogle Scholar
  42. Pansini M, Longo C (2003) A review of the Mediterranean Sea sponge biogeography with, in appendix, a list of the demosponges hitherto recorded from this sea. In: Nuova Immagine (ed) Biogeographia, marine biogeography of the Mediterranea Sea: patterns and dynamics of biodiversity, vol XXIV. Tavarnelle Val Di Pesa, Florence, pp 59–90Google Scholar
  43. Pansini M, Longo C (2008) Porifera. In: Relini G (ed) Checklist della flora e della fauna dei mari italiani. Biol Mar Medit 15(1): 42–66Google Scholar
  44. Pansini M, Pesce LG (1998) Higginsia ciccaresi sp. nov. (Porifera: Demospongiae) from a marine cave on the Apulian coast (Mediterranean Sea). J Mar Biol Ass UK 78:1083–1091CrossRefGoogle Scholar
  45. Peirano A, Morri C, Bianchi CN, Rodolfo-Metalta R (2001) Biomass, carbonate standing stock and production of the Mediterranean coral Cladocora caespitosa (L.) Facies 44:75–80CrossRefGoogle Scholar
  46. Pérès JM, Picard J (1964) Nouveau manuel de bionomie benthique de la Mer Méditerranée. Rec Trav St Mar Endoume 31:1–137Google Scholar
  47. Sarà M (1968) Un coralligeno di piattaforma (coralligène de plateau) lungo il littorale pugliese. Arch Oceanogr Limnol 15(suppl):139–150Google Scholar
  48. Sarà M (1969) Research on coralligenous formation: problems and perspectives. Pubbl Staz Zool Napoli 37:124–134Google Scholar
  49. Sarà M (1973) Sponge population of the Apulian coralligenous formations. Rapporto Della Commissione Internazionale per Il mar Mediterraneo 21:613–615Google Scholar
  50. Sarà M (1999) Il ruolo dei Poriferi nella biodiversità, struttura e dinamica del coralligeno Mediterraneo. Biol Mar Medit 6(1):144–150Google Scholar
  51. Sartoretto S (1996) Vitesse de croissance et bioérosion des concrétionnements “coralligènes” de Méditerranée nord-occidentale. Rapport avec les variations Holocènes du niveau marin. Thèse Doctorat d’Écologie, Université d’Aix-Marseille IIGoogle Scholar
  52. Underwood AJ (1997) Experiments in ecology: their logical design and interpretation using analysis of variances. Cambridge University Press, CambridgeGoogle Scholar
  53. UNEP-MAP-RAC/SPA (2003) The coralligenous in the Mediterranean Sea. Regional Activity Centre for Specially Protected Areas, TunisGoogle Scholar
  54. UNEP-MAP-RAC/SPA (2008) Action plan for the conservation of the coralligenous and other calcareous bio-concretions in the Mediterranean Sea. Regional Activity Centre for Specially Protected Areas, TunisGoogle Scholar
  55. UNEP-MAP-RAC/SPA (2015) Updated Action plan for the conservation of the coralligenous and other calcareous bio-concretions in the Mediterranean Sea. Regional Activity Centre for Specially Protected Areas, TunisGoogle Scholar
  56. Van Soest RWM, Boury-Esnault N, Hooper JNA et al (2016) World Porifera Database. Accessed 2 Dec 2016
  57. Virgilio M, Airoldi L, Abbiati M (2006) Spatial and temporal variations of assemblages in a Mediterranean coralligenous reef and relationships with surface orientation. Coral Reefs 25:265–272. doi: 10.1007/s00338-006-0100-2 CrossRefGoogle Scholar
  58. Voultsiadou E (2009) Reevaluating sponge diversity and distribution in the Mediterranean Sea. Hydrobiologia 628:1–12CrossRefGoogle Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • C. Longo
    • 1
    • 2
  • F. Cardone
    • 1
    • 2
  • C. Pierri
    • 1
    • 2
    • 3
  • M. Mercurio
    • 1
    • 2
  • S. Mucciolo
    • 4
  • C. Nonnis Marzano
    • 1
    • 2
  • G. Corriero
    • 1
    • 2
    • 3
  1. 1.Dipartimento di BiologiaUniversità di Bari Aldo MoroBariItaly
  2. 2.CoNISMaRomeItaly
  3. 3.LifeWatch ItalyLecceItaly
  4. 4.Laboratório de Bentos, Centro de Estudos do MarUniversidade Federal do ParanáParanàBrazil

Personalised recommendations