Advertisement

Marine Biodiversity

, Volume 48, Issue 1, pp 367–393 | Cite as

Second members of the harpacticoid genera Pontopolites and Pseudoleptomesochra (Crustacea, Copepoda) are new species from Korean marine interstitial

  • Tomislav Karanovic
  • Joo-Lae Cho
Original Paper

Abstract

Monotypic genera present a specific set of problems in phylogenetic analyses, and their familiar placements are often provisional. Our survey of Korean copepods in marginal habitats resulted in a discovery of two new species, both representing second members of their respective genera: Pontopolites duljjae sp. nov. and Pseudoleptomesochra mannada sp. nov. This gave us an opportunity to contribute a set of novel characters, including previously unused cuticular organs on somites, and to evaluate the most important synapomorphies in each genus. Pontopolites duljjae differs from the northern Atlantic Pontopolites typicus Scott T., 1894 in the segmentation of antennula and armature of several appendages. Especially intriguing is the sexual dimorphism in the segmentation and armature of the second to fourth leg endopods, but this is probably a plesiomorphic character state in a larger group of nannopodids. We provide an amended diagnosis of the genus Pontopolites Scott T., 1894. In contrast, morphological differences between our Psudoleptomesochra mannada and its congener from the northeast Pacific, Psudoleptomesochra typica Lang, 1965, are rather minute and contribute very little to the generic diagnosis. In both new species, cuticular organs show very little intraspecific variability and sexual dimorphism, which provides an invaluable tool for matching females and males in samples from different localities or sympatric congeners, as well as for delimitation of closely related species using cuticular organs as landmarks for geometric morphometric analyses. They can also be useful characters for reconstructing phylogenetic relationships, especially in interstitial groups with numerous appendage reductions, such as members of Nannopodidae and Ameiridae.

Keywords

Ameiridae Cuticular organs Meiofauna Nannopodidae Stygofauna Taxonomy 

Notes

Acknowledgements

This work was supported by a grant from the National Insitute of Biological Resources (NIBR), funded by the Ministry of Environment (MOE) of the Republic of Korea (NIBR2017 04101). The scanning electron microscope was made available through the courtesy of Prof. Jin Hyun Jun (Eulji University, Seoul), and we also want to thank Mr. Junho Kim (Eulji University, Seoul) for technical help provided.

References

  1. Armonies W, Reise K (2000) Faunal diversity across a sandy shore. Mar Ecol Progr Ser 196:49–57. doi: 10.3354/meps196049 CrossRefGoogle Scholar
  2. Boundrias MA, Pires J (2002) Unusual sensory setae of the raptorial Branchinecta gigas (Branchiopoda: Anostraca). Hydrobiologia 486:19–27. doi: 10.1023/A:1021317927643 CrossRefGoogle Scholar
  3. Brown AC, McLachlan A (1990) Ecology of sandy shores. Elsevier, Amsterdam. doi: 10.1016/b978-012372569-1/50001-x
  4. Buck RC, Hull DL (1966) The logical structure of the Linnean hierarchy. Syst Zool 15:97–111CrossRefGoogle Scholar
  5. Cash-Clark CE, Martin JW (1994) Ultrastructure of the frontal sensory fields in the Lynceidae (Crustacea, Branchiopoda, Laevicaudata). J Morphol 221:153–160. doi: 10.1002/jmor.1052210205 CrossRefPubMedGoogle Scholar
  6. Chang CY (2009) Inland-water Copepoda. Illustrated encyclopedia of Fauna and Flora of Korea, vol 42. Ministry of Education, Seoul [in Korean] Google Scholar
  7. Chang CY (2010) Continental Cyclopoids I. Invertebr Fauna Korea 21(19):1–92Google Scholar
  8. Chang CY, Lee J (2012) Two new species of Halicyclops (Copepoda, Cyclopoida) from the estuarine interstitial waters in South Korea. Zootaxa 3368:197–210Google Scholar
  9. Cho GY, Lee JS, Lee J-Y, Kim B-J, Nam EJ, Eun Y, Kim TW, Lee B-Y, Oh K-H (2011) The compilation of National List of indigenous species of the Korean peninsula. Bull Nat Inst Biol Res 2:1–6Google Scholar
  10. Corgosinho PHC (2012) Talpacoxa brandini gen. Et sp. nov. a new Nannopodidae Brady, 1880 (Copepoda: Harpacticoida) from submersed sands of Pontal do Sul (Paraná, Brazil). J Nat Hist 46:45–46. doi: 10.1080/00222933.2012.725138 CrossRefGoogle Scholar
  11. Elofsson R, Hessler RR (1994) Sensory structures associated with the body cuticle of Hutchinsoniella macracantha (Cephalocarida). J Crust Biol 14:454–463. doi: 10.1163/193724094x00038 CrossRefGoogle Scholar
  12. Fiers F, Kotwicki L (2013) The multiple faces of Nannopus palustris auct. Reconsidered: a morphological approach (Copepoda: Harpacticoida: Nannopodidae). Zool Anz 253:36–65. doi: 10.1016/j.jcz.2013.08.001 CrossRefGoogle Scholar
  13. Gárlitska L, NeretinaT SD, Mugue N, DeTroch M, Baguley JG, Azovsky A (2012) Cryptic diversity of the ‘cosmopolitan’ harpacticoid copepod Nannopus palustris: genetic and morphological evidence. Mol Ecol 21:5336–5347. doi: 10.1111/mec.12016 CrossRefPubMedGoogle Scholar
  14. George KH (2002) New phylogenetic aspects of the Cristacoxidae Huys (Copepoda, Harpacticoida), including the description of a new genus from the Magellan region. Vie Milieu 52:31–41Google Scholar
  15. Giere O (2009) Meiobenthology, the microscopic motile Fauna of aquatic sediments, 2nd edn. Springer, Berlin. doi: 10.1007/978-3-540-68661-3
  16. Gray JS (1997) Marine biodiversity: patterns, threats and conservation needs. Biodivers Conserv 6:153–175CrossRefGoogle Scholar
  17. Gray JS (2002) Species richness of marine soft sediments. Mar Ecol Progr Ser 244:285–297. doi: 10.3354/meps244285 CrossRefGoogle Scholar
  18. Hallberg E, Hannson BS (1999) Arthropod sensilla: morphology and phylogenetic considerations. Microsc Res Tech 47:428–439. doi: 10.1002/(sici)1097-0029(19991215)47:6<428::aid-jemt6>3.0.co;2-p CrossRefPubMedGoogle Scholar
  19. Høeg JT, Kolbasov GA (2002) Lattice organs in y-cyprids of the Facetotecta and their significance in the phylogeny of the Crustacea Thecostraca. Acta Zool 83:67–79. doi: 10.1046/j.0001-7272.2001.00100.x CrossRefGoogle Scholar
  20. Huys R, Boxshall GA (1991) Copepod evolution. Ray Society, LondonGoogle Scholar
  21. Huys R, Kihara TC (2010) Systematics and phylogeny of Cristacoxidae (Copepoda, Harpacticoida): a review. Zootaxa 2568:1–38Google Scholar
  22. Karanovic T (2008) Marine interstitial Poecilostomatoida and Cyclopoida (Copepoda) of Australia. Crustaceana Monogr 9:1–331. doi: 10.1163/ej.9789004164598.i-332 CrossRefGoogle Scholar
  23. Karanovic T (2010) First record of the harpacticoid genus Nitocrellopsis in Australia, with descriptions of three new species. Int J Lim 46:249–280. doi: 10.1051/limn/2010021 CrossRefGoogle Scholar
  24. Karanovic T (2014) On the phylogeny of Euryteinae (Crustacea, Copepoda, Cyclopoida), with description of one new species from Korea. Zool Anz 253:512–525. doi: 10.1016/j.jcz.2014.07.002 CrossRefGoogle Scholar
  25. Karanovic T, Cho J-L (2012) Three new ameirid harpacticoids from Korea and first record of Proameira simplex (Crustacea: Copepoda: Ameiridae). Zootaxa 3368:91–127Google Scholar
  26. Karanovic T, Cho J-L, Lee W (2012a) Redefinition of the parastenocaridid genus Proserpinicaris (Copepoda:Harpacticoida), with description of three new species from Korea. J Nat Hist 46:1573–1613. doi: 10.1080/00222933.2012.681316 CrossRefGoogle Scholar
  27. Karanovic T, Cooper SJB (2011) Third genus of parastenocarid copepods from Australia supported by molecular evidence (Harpacticoida). Crustaceana Monogr 16:293–337. doi: 10.1163/ej.9789004181380.i-566.116 CrossRefGoogle Scholar
  28. Karanovic T, Djurakic M, Eberhard SM (2015b) Cryptic species or inadequate taxonomy? Implementation of 2D geometric morphometrics based on integumental organs as landmarks for delimitation and description of copepod taxa. Syst Biol 65:304–327. doi: 10.1093/sysbio/syv088 CrossRefPubMedGoogle Scholar
  29. Karanovic T, Eberhard SM, Perina G, Callan S (2013b) Two new subterranean ameirids (Crustacea : Copepoda : Harpacticoida) expose weaknesses in the conservation of short-range endemics threatened by mining developments in Western Australia. Invertebr Syst 27:540–566. doi: 10.1071/is12084 CrossRefGoogle Scholar
  30. Karanovic T, Grygier M, Lee W (2013a) Endemism of subterranean Diacyclops in Korea and Japan, with descriptions of seven new species of the languidoides-group and redescriptions of D. brevifurcus Ishida, 2006 and D. suoensis Itô, 1954 (Crustacea, Copepoda, Cyclopoida). ZooKeys 267:1–76. doi: 10.3897/zookeys.267.3935 CrossRefGoogle Scholar
  31. Karanovic T, Hancock P (2009) On the diagnostic characters of the genus Stygonitocrella (Copepoda, Harpacticoida) with description of seven new species from Australian subterranean waters. Zootaxa 2324:1–85CrossRefGoogle Scholar
  32. Karanovic T, Kim K (2014a) New insights into polyphyly of the harpacticoid genus Delavalia (Crustacea, Copepoda) through morphological and molecular study of an unprecedented diversity of sympatric species in a small South Korean bay. Zootaxa 3783:1–96. doi: 10.11646/zootaxa.3783.1.1 CrossRefPubMedGoogle Scholar
  33. Karanovic T, Kim K (2014b) Suitability of cuticular pores and sensilla for harpacticoid copepod species delineation and phylogenetic reconstruction. Arthr Struct Dev 43:615–658. doi: 10.1016/j.asd.2014.09.003 CrossRefGoogle Scholar
  34. Karanovic T, Kim K, Grygier MJ (2015c) A new species of Schizopera (Copepoda: Harpacticoida) from Japan, its phylogeny based on the mtCOI gene and comments on the genus Schizoperopsis. J Nat Hist 49:2493–2526. doi: 10.1080/00222933.2015.1028112 CrossRefGoogle Scholar
  35. Karanovic T, Kim K, Lee W (2014) Morphological and molecular affinities of two East Asian species of Stenhelia (Crustacea, Copepoda, Harpacticoida). ZooKeys 411:105–143. doi: 10.3897/zookeys.411.7346 CrossRefGoogle Scholar
  36. Karanovic T, Kim K, Lee W (2015a) Concordance between molecular and morphology-based phylogenies of Korean Enhydrosoma (Copepoda: Harpacticoida: Cletodidae) highlights important synapomorphies and homoplasies in this genus globally. Zootaxa 3990:451–496. doi: 10.11646/zootaxa.3990.4.1 CrossRefPubMedGoogle Scholar
  37. Karanovic T, Krajicek M (2012) When anthropogenic translocation meets cryptic speciation globalized bouillon originates; molecular variability of the cosmopolitan freshwater cyclopoid Macrocyclops albidus (Crustacea: Copepoda). Int J Lim 48:63–80. doi: 10.1051/limn/2011061 CrossRefGoogle Scholar
  38. Karanovic T, Lee W (2012) A new species of Parastenocaris from Korea, with a redescription of the closely related P. biwae from Japan (Copepoda: Harpacticoida: Parastenocarididae). J Spec Res 1:4–34. doi: 10.12651/jsr.2012.1.1.004 CrossRefGoogle Scholar
  39. Karanovic T, McRae J (2013) The genus Schizopera (Copepoda, Harpacticoida) in the Pilbara region of Western Australia, with description of a new species and its molecular and morphological affinities. Rec West Austr Mus 28:119–140CrossRefGoogle Scholar
  40. Karanovic T, Yoo H, Lee W (2012b) A new cyclopoid copepod from Korean subterranean waters reveals an interesting connection with the Central Asian fauna (Crustacea: Copepoda: Cyclopoida). J Spec Res 1:155–173. doi: 10.12651/jsr.2012.1.2.156 CrossRefGoogle Scholar
  41. Khalaji-Pirbalouty V (2014) The morphology, arrangement, and ultrastructure of a new type of microtrich sensilla in marine isopods (Crustacea, isopoda). Zool Stud 53:7. doi: 10.1186/1810-522X-53-7 CrossRefGoogle Scholar
  42. Kim I-H (2008) Sea Lice. Invertebr Fauna Korea 21(1):1–66Google Scholar
  43. Kim I-H (2014) Six new species of Copepoda (Clausiidae, Pseudanthessiidae, Polyankyliidae) associated with polychaetes from Korea. J Spec Res 3(2):95–122. doi: 10.12651/jsr.2014.3.2.095 CrossRefGoogle Scholar
  44. Kim K, Park E, Lee W (2011) First record of Onychostenhelia bispinosa (Copepoda: Harpacticoida: Miraciidae) from Korea. Bull Nat Inst Biol Res 2(2):55–65Google Scholar
  45. Kim K, Trebukhova Y, Lee W, Karanovic T (2014) A new species of Enhydrosoma (Copepoda: Harpacticoida: Cletodidae) from Korea, with redescription of E. intermedia and establishment of a new genus. Proc Biol Soc Wash 127:248–283. doi: 10.2988/0006-324x-127.1.248 CrossRefGoogle Scholar
  46. Knox EB (1998) The use of hierarchies as organizational models in systematics. Biol J Linn Soc 63:1–49. doi: 10.1111/j.1095-8312.1998.tb01637.x CrossRefGoogle Scholar
  47. Kornev PN, Chertoprud EC (2008) Copepod crustaceans of the order Harpacticoida of the White Sea: morphology, systematics. Biology Faculty, Moscow State University, Tovarishchestvo Nauchnikh Izdanii KMK, MoscowGoogle Scholar
  48. Lang K (1948) Monographie der Harpacticiden, A-B. Nordiska Bokhandeln, LundGoogle Scholar
  49. Lang K (1965) Copepoda Harpacticoida from the Californian Pacific Coast. Kungl Sven Vet-Akad Handl Fjarde Ser 10:1–560Google Scholar
  50. Lee W, Karanovic T (2012) Editorial: biodiversity of invertebrates in Korea. Zootaxa 3368:5–6Google Scholar
  51. Lee W, Park E, Song SJ (2012) Invertebrate Fauna of Korea, 21 (11), Marine Harpacticoida. National Institute of Biological Resources, Ministry of Environment, SeoulGoogle Scholar
  52. Mauchline J (1977) The integumental sensilla and glands of pelagic Crustacea. J Mar Biol Assoc UK 57:973–994. doi: 10.1017/S0025315400026060 CrossRefGoogle Scholar
  53. Mauchline J (1988) Taxonomic value of pore pattern in the integument of calanoid copepods (Crustacea). J Zool 214:697–749. doi: 10.1111/j.1469-7998.1988.tb03768.x CrossRefGoogle Scholar
  54. Meisch C, Wouters K (2004) Valve surface structure of Candona neglecta Sars, 1887 (Crustacea, Ostracoda). Stud Quatern 21:15–18Google Scholar
  55. Nam E, Lee W (2012) First record of the genus Sinamphiascus (Copepoda: Harpacticoida) from Korean waters. J Spec Res 1(1):44–55. doi: 10.12651/jsr.2012.1.1.044 CrossRefGoogle Scholar
  56. Nicholls AG (1935) Copepods from the interstitial fauna of a sandy beach. J Mar Biol Assoc UK (N Ser) 20:397–406. doi: 10.1017/s0025315400045306 CrossRefGoogle Scholar
  57. Olesen J (1996) External morphology and phylogenetic significance of the dorsal/neck organ in the Conchostraca and the head pores of the cladoceran family Chydoridae (Crustacea, Branchiopoda). Hydrobiologia 330:213–226. doi: 10.1007/BF00024209 CrossRefGoogle Scholar
  58. Oshel PE, Steele VJ, Steele DH (1988) Comparative SEM morphology of amphipod microtrich sensilla. Crustaceana, suppl 13:100–106Google Scholar
  59. Park E-O, Han MS, Lee W (2011) New record of Scottolana bulbifera (Copepoda: Harpacticoida: Canuellidae) from Korea. Bull Nat Inst Biol Res 2(2):66–75. doi: 10.12651/jsr.2012.1.1.056 CrossRefGoogle Scholar
  60. Park E-O, Han MS, Lee W (2012) The first record of Orthopsyllus species (Copepoda: Harpacticoida: Orthopsyllidae) from Korean waters. J Spec Res 1(1):56–67. doi: 10.12651/jsr.2012.1.1.056 CrossRefGoogle Scholar
  61. Por FD (1986) A re-evaluation of the family Cletodidae Sars, Lang (Copepoda, Harpacticoida). In: Schriever G, Schminke HK, Shih C-T (eds) Proceedings of the Second International Conference on Copepoda, Ottawa, Canada, 13–17 August, 1984. Syllogeus 58:420–425Google Scholar
  62. Powell CVL, Halcrow K (1982) The surface microstructure of marine and terrestrial isopods (Crustacea, Peracarida). Zoomorphologie 101:151–164. doi: 10.1007/bf00312430 CrossRefGoogle Scholar
  63. Preker M (2005) Meiofauna: life between sand grains. Queensl Natur 43:33–38Google Scholar
  64. Pruett L, Cimino J (2000) Coastal length based on the World Vector Shoreline, United States Defense Mapping Agency, 1989. Global Maritime Boundaries Database (GMBD), Veridian - MRJ Technology Solutions, Fairfax, VirginiaGoogle Scholar
  65. Puri HS (1974) Normal pores and the phylogeny of Ostracoda. Geosc Man 6:137–151Google Scholar
  66. Remane A (1933) Verteilung und Organisation der benthonischen Mikrofauna der Kieler Bucht. Wiss Meeresuntersuch Kiel 21:163–221Google Scholar
  67. Sars GO (1909) Zoological results of the third Tanganyika expedition, report on the Copepoda. Proc Zool Soc Lond 1909:31–77. doi: 10.1111/j.1096-3642.1909.tb01855.x CrossRefGoogle Scholar
  68. Scott T (1894) II - additions to the Fauna of the firth of forth, part VI. Rep Fish Board Scotl 12(3):231–271Google Scholar
  69. Soh HY, Moon SY, Wi JH (2010) Marine planktonic Copepods II. Invertebr Fauna Korea 21(28):1–157Google Scholar
  70. Song SJ, Rho HS, Kim W (2007) A new species of Huntemannia (Copepoda: Harpacticoida: Huntemanniidae) from the Yellow Sea, Korea. Zootaxa 1616:37–48Google Scholar
  71. Staton JL, Wickliffe LC, Gárlitska L, Villanueva SM, Coull BC (2005) Genetic isolation discovered among previously described sympatric morphs of a meiobenthic copepod. J Crust Biol 25:551–557. doi: 10.1651/c-2600.1 CrossRefGoogle Scholar
  72. Stock JK, Von Vaupel Klein JC (1996) Mounting media revisited: the suitability of Reyne’s fluid for small crustaceans. Crustaceana 69:749–798. doi: 10.1163/156854096x00826 CrossRefGoogle Scholar
  73. Thrush SF, Grey JS, Hewitt JE, Ugland KI (2006) Predicting the effect of habitat homogenization on marine biodiversity. Ecol Appl 16:1636–1642. doi: 10.1890/1051-0761(2006)016[1636:pteohh]2.0.co;2 CrossRefPubMedGoogle Scholar
  74. Tsukagoshi A (1990) Ontogenetic change of distributional patterns of pore systems in Cythere species and its phylogenetic significance. Lethaia 23:225–241. doi: 10.1111/j.1502-3931.1990.tb01450.x CrossRefGoogle Scholar
  75. Ventham D (2011) Harpacticoid copepods from the Sussex coast (eastern English Channel): records 1992–1997. The Booth Museum of Natural History, BrightonGoogle Scholar
  76. Vincx M (1996) Meiofauna in marine and freshwater sediments. In: Hall GS (ed) Methods for the examination of organismal diversity in soils and sediments. CAB International, Wallingford, pp 187–195Google Scholar
  77. Von Vaupel Klein JC (1982) Structure of integumental perforations in the Euchirella messinensis female (Crustacea, Copepoda, Calanoida). Neth J Zool 32:374–394. doi: 10.1163/002829681x00392 CrossRefGoogle Scholar
  78. Walter TC, Boxshall G (2016) World Copepoda database. Available from: http://www.marinespecies.org/copepoda. Accessed on 3 March 2016
  79. Wilson CB (1935) A new and important copepod habitat. Smithson Misc Collect 94:1–13Google Scholar
  80. Zeppilli D, Sarrazin J, Ledu D, Marinez Arbizu P, Fontaneto D, Fonanier C, Gooday AJ, Kristensen RM, Ivanenko VN, Sorensen MV, Vanreusel A, Thèbault J, Mea M, Allio N, Andro T, Arvigo A, Castrec J, Danielo M, Foulon V, Fumeron R, Hermabessiere L, Hulot V, James T, Langonne-Augen R, Le Bot T, Long M, Dendy M, Morel Q, Pantalos M, Pouplard E, Raimondeau L, Rio-Cabello A, Seite S, Traisnel G, Urvoy K, Van Der Segen T, Weyand M, Fernandes D (2015) Is the meiofauna a good indicator for climate change and anthropogenic impacts? Mar Biodivers 45:505–535. doi: 10.1007/s12526-015-0359-z CrossRefGoogle Scholar
  81. Zimmer A, Araujo PB, Bond-Buckup G (2009) Diversity and arrangement of the cuticular structures of Hyalella (Crustacea: Amphipoda: Dogielinotidae) and their use in taxonomy. Zoologia 26:127–142. doi: 10.1590/s1984-46702009000100019 CrossRefGoogle Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.College of Science, Department of Biological ScienceSungkyunkwan UniversitySuwonSouth Korea
  2. 2.University of Tasmania, IMASHobartAustralia
  3. 3.Environmental Research ComplexNational Institute of Biological ResourcesIncheonSouth Korea

Personalised recommendations