Marine Biodiversity

, Volume 46, Issue 3, pp 707–711 | Cite as

Association of the mysid Idiomysis inermis with the sea anemone Stichodactyla haddoni in Moreton Bay, Australia

  • R. N. Bhaduri
  • A. L. Crowther
Short Communication


Some mysids (Crustacea: Mysida) live symbiotically with a variety of marine invertebrates, including cnidarians. One of these, the carpet anemone Stichodactyla haddoni (Cnidaria: Actiniaria), is known to host the mysid Idiomysis inermis, but quantitative survey data on this association are lacking. Therefore, we surveyed the spatial distribution pattern of I. inermis in relation to the sea anemone S. haddoni in Moreton Bay, Queensland, Australia. Of the 20 anemones examined, nine (45 %) were colonized by altogether 114 individuals of mysids, which were found swarming above the host’s oral disc and tentacles. The number of mysids ranged 6–24 per anemone, with a mean of 12.7 individuals per host. The same actiniarians colonized by I. inermis were also host to the anemone shrimp Ancylomenes holthuisi. Our findings suggest that I. inermis was not limited by space, as several hosts were not colonized. No positive correlation was observed between anemone size and number of mysids, suggesting that host size did not seem to play a major role in determining the density of this mysid species. The association between I. inermis and S. haddoni is shown to be a facultative commensalism.


Actiniaria Host Idiomysis inermis Spatial distribution Commensalism 



We thank J. Jacob, I. D. Lawn, and M. Preker for their help and support in this project. We also thank two anonymous reviewers for critically reviewing this manuscript.


  1. Alldredge AL, King JM (1980) Effects of moonlight on the vertical migration patterns of demersal zooplankton. J Exp Mar Biol Ecol 44:133–156CrossRefGoogle Scholar
  2. Bӑcescu M (1973) A new case of commensalisms in the Red Sea: the mysid Idiomysis tsurnamali n.sp. with the Coelenterata Megalactis and Cassiopea. Rev Roum Biol Zool 18:3–7Google Scholar
  3. Bos AR, Hoeksema BW (2015) Cryptobenthic fishes and co-inhabiting shrimps associated with the mushroom coral Heliofungia actiniformis (Fungiidae) in the Davao Gulf, Philippines. Environ Biol Fish 98:1479–1489CrossRefGoogle Scholar
  4. Bowman TE, Meyers CD, Hicks SD (1963) Notes on associations between hyperiid amphipods and medusae in Chesapeake and Narragansett Bays and the Niantic River. Chesap Sci 4:141–146CrossRefGoogle Scholar
  5. Brattegard T (1970) Mysidacea from shallow water in the Caribbean Sea. Sarsia 43:111–154CrossRefGoogle Scholar
  6. Browne JG, Kingsford MJ (2005) A commensal relationship between the scyphozoan medusa Catostylus mosaicus and the copepod Paramacrochiron maximum. Mar Biol 146:1157–1168CrossRefGoogle Scholar
  7. Bruce AJ (1969) Preliminary descriptions of sixteen new species of the genus Periclimenes Costa, 1844 (Crustacea, Decapoda Natantia, Pontoniinae). Zool Meded 43:253–278Google Scholar
  8. Chadwick NE, Ďuriš Z, Horká I (2008) Biodiversity and behavior of shrimps and fishes symbiotic with sea anemones in the Gulf of Aqaba, northern Red Sea. In: Por FD (ed) Aqaba-Eilat, the improbable Gulf. Environment, biodiversity and preservation. Hebrew University Magnes Press, Jerusalem, pp 209–223, pls I–IIGoogle Scholar
  9. Clarke WD (1955) A new species of the genus Heteromysis (Crustacea, Mysidacea) from the Bahama Islands, commensal with a sea-anemone. Am Mus Novit 1716:1–13Google Scholar
  10. Connell AD (2008) New species of mysids (Crustacea: Mysidae) from the east coast of South Africa, with notes on habitat preferences. Afr Nat Hist 4:1–10Google Scholar
  11. Crowther AL, Fautin DG, Wallace CC (2011) Stylobates birtlesi sp. n., a new species of carcinoecium-forming sea anemone (Cnidaria, Actiniaria, Actiniidae) from eastern Australia. Zookeys 89:33–48CrossRefGoogle Scholar
  12. Davie PJF (2011) Wild guide to Moreton Bay and adjacent coasts. Queensland Museum, South BrisbaneGoogle Scholar
  13. de Man JG (1888) Bericht über die von Herrn Dr. J. Brock im indischen Archipel gesammelten Decapoden und Stomatopoden. Arch Nat (Berlin) 53:215–600Google Scholar
  14. Deprez T, Wooldridge T, Mees J (2001) Idiomysis mozambicus, a new mysid species (crustacea: mysidacea) from Mozambique. Hydrobiologia 459:47–49CrossRefGoogle Scholar
  15. Duchassaing P (1850) Animaux Radiaires des Antilles. Plon Fréres, ParisGoogle Scholar
  16. Duchassaing de Fonbressin P, Michelotti G (1860) Mémoire sur les Coralliaires des Antilles. Imprimerie Royale, TurinGoogle Scholar
  17. Ducklow HW, Mitchell R (1979) Composition of mucus released by coral reef coelenterates. Limnol Oceanogr 24:706–714Google Scholar
  18. Ehrenberg CG (1834) Beiträge zur physiologischen Kenntniss der Corallenthiere im allgemeinen, und besonders des rothen Meeres, nebst einem Versuche zur physiologischen Systematik derselben. Abh K Akad Wiss Berlin 1:225–380Google Scholar
  19. Fautin DG, Allen GR (1992) Field guide to anemone fishes and their host sea anemones. Western Australian Museum, PerthGoogle Scholar
  20. Fautin DG, Crowther AL, Wallace CC (2008) Sea anemones (Cnidaria: Anthozoa: Actiniaria) of Moreton Bay. Mem Queensl Mus 54:35–64Google Scholar
  21. Fransen CHJM (1989) Notes on caridean shrimps collected during the Snellius-II Expedition. 1. Associates of Anthozoa. Neth J Sea Res 23:131–147CrossRefGoogle Scholar
  22. Fukuoka K (2005) A new species of Heteromysis (Mysida, Mysidae) associated with sponges, from the Uraga Channel, central Japan, with notes on distribution and habitat within the genus Heteromysis. Crustaceana 77:1353–1373CrossRefGoogle Scholar
  23. Gan SY, Azman BAR, Yoshida T, Majid AM, Toda T, Takahashi K, Othman BHR (2010) Comparison of day and night mysid assemblages in a seagrass bed by using emergence traps, with key to species occurring at Pulau Tinggi, Malaysia. Coast Mar Sci 34:74–81Google Scholar
  24. Greenwood JG, Hadley DJ (1982) A redescription of the mysid Idiomysis inermis Tattersall, 1922 (Mysidacea) to include the previously unknown female. Crustaceana 42:174–178CrossRefGoogle Scholar
  25. Halstead BW (1970) Venomous coelenterates: hydroids, jellyfishes, corals and sea anemones. In: Bücherl W, Buckley EE (eds) Venomous animals and their venoms 3. Academic, New York, pp 395–417Google Scholar
  26. Herrnkind W, Stanton G, Conklin E (1976) Initial characterization of the commensal complex associated with the anemone, Lebrunia danae, at Grand Bahama. Bull Mar Sci 26:65–71Google Scholar
  27. Hoeksema BW, Fransen CHJM (2011) Space partitioning by symbiotic shrimp species cohabitating in the mushroom coral Heliofungia actiniformis at Semporna, eastern Sabah. Coral Reefs 30:519CrossRefGoogle Scholar
  28. Hostens K, Mees J (1999) The mysid-feeding guild of demersal fishes in the brackish zone of the Westerschelde estuary. J Fish Biol 55:704–719CrossRefGoogle Scholar
  29. Khan RN, Becker JHA, Crowther AL, Lawn ID (2003) Sea anemone host selection by the symbiotic saddled cleaner shrimp Periclimenes holthuisi. Mar Freshw Res 54:653–656CrossRefGoogle Scholar
  30. Khan RN, Becker JHA, Crowther AL, Lawn ID (2004) Spatial distribution of symbiotic shrimps (Periclimenes holthuisi, P. brevicarpalis, Thor amboinensis) on the sea anemone Stichodactyla haddoni. J Mar Biol Assoc UK 84:201–203CrossRefGoogle Scholar
  31. Le Sueur CA (1817) Observations on several species of the genus Actinia; illustrated by figures. J Acad Sci (Phila) 1(149–154):169–189Google Scholar
  32. Li X (2008) Palaemonid shrimps (Crustacea: Decapoda: Caridea) from Moreton Bay, Queensland, Australia. Mem Queensl Mus 54:233–267Google Scholar
  33. Macquart-Moulin C (1971) Modifications des réactions photocinétiques des péracarides de l’hyponeuston nocturne en function de l’importance de l’éclairement. Tethys 3:897–920Google Scholar
  34. Modlin RF (1987) Mysidacea from shallow waters in the vicinity of Carrie Bow Cay, Belize, Central America, with descriptions of two new species. J Crustac Biol 7:106–121CrossRefGoogle Scholar
  35. Murano M (1978) A new species of Idiomysis (Crustacea, Mysidacea) from Japan. Bull Nat Sci Mus Ser A (Zool) 4:263–266Google Scholar
  36. Niggl W, Wild C (2010) Spatial distribution of the upside-down jellyfish Cassiopea sp. within fringing coral reef environments of the Northern Red Sea: implications for its life cycle. Helgol Mar Res 64:281–287CrossRefGoogle Scholar
  37. Niggl W, Naumann MS, Struck U, Manasrah R, Wild C (2010) Organic matter release by the benthic upside-down jellyfish Cassiopea sp. fuels pelagic food webs in coral reefs. J Exp Mar Biol Ecol 384:99–106CrossRefGoogle Scholar
  38. Patzner RA (2004) Associations with sea anemones in the Mediterranean Sea: a review. Ophelia 58:1–11CrossRefGoogle Scholar
  39. Ross DM (1967) Behavioural and ecological relationships between sea anemones and other invertebrates. Oceanogr Mar Biol Annu Rev 5:291–316Google Scholar
  40. Ross DM (1983) Symbiotic relations. In: Bliss DE (ed) The biology of Crustacea 7, behavior and ecology. Academic, New York, pp 163–214Google Scholar
  41. Saville-Kent W (1893) The Great Barrier Reef of Australia; its products and potentialities. W H Allen & Co, LondonCrossRefGoogle Scholar
  42. Schenkel E (1902) Beitrag zur Kenntnis der Dekapodenfauna von Celebes. Verh Naturforsch Ges Basel 13:485–585Google Scholar
  43. Scott A, Harasti D, Davis T, Smith SDA (2015) Southernmost records of the host sea anemone, Stichodactyla haddoni, and associated commensal shrimps in a climate change hotspot. Mar Biodivers 15:145–146. doi: 10.1007/s12526-014-0237-0 CrossRefGoogle Scholar
  44. Sluiter CP (1910) Westindische Holothurien. Zool Jahrb Suppl 11:331–342Google Scholar
  45. Stanton G (1977) Habitat partitioning among associated decapods with Lebrunia danae at Grand Bahama. Proc 3rd Int Coral Reef Symp 1:169–175Google Scholar
  46. Tattersall WM (1922) Indian Mysidacea. Rec Indian Mus 24:445–504Google Scholar
  47. Thiel M, Baeza JA (2001) Factors affecting the social behaviour of crustaceans living symbiotically with other marine invertebrates: a modelling approach. Symbiosis 30:163–190Google Scholar
  48. van der Meij SE (2014) Host species, range extensions, and an observation of the mating system of Atlantic shallow-water gall crabs (Decapoda: Cryptochiridae). Bull Mar Sci 90:1001–1010CrossRefGoogle Scholar
  49. Wild C, Niggl W, Maumann MS, Haas AF (2010) Organic matter release by Red Sea coral reef organisms — potential effects on microbial activity and in situ O2 availability. Mar Ecol Prog Ser 411:61–71CrossRefGoogle Scholar
  50. Wirtz P (1997) Crustacean symbionts of the sea anemone Telmatactis cricoides at Madeira and the Canary Islands. J Zool 242:799–811CrossRefGoogle Scholar
  51. Wittmann KJ (1977) Modification of association and swarming in North Adriatic Mysidacea in relation to habitat and interacting species. In: Keegan BF et al. (eds), Biology of benthic organisms, 11th European Symposium on Marine Biology, Galway, pp 605–612Google Scholar
  52. Wittmann KJ (2008) Two new species of Heteromysini (Mysida, Mysidae) from the island of Madeira (NE Atlantic), with notes on sea anemone and hermit crab commensalisms in the genus Heteromysis SI Smith, 1873. Crustaceana 81:351–374CrossRefGoogle Scholar
  53. Wittmann KJ (2013) Mysids associated with sea anemones from the tropical Atlantic: descriptions of Ischiomysis new genus, and two new species in this taxon (Mysida, Mysidae, Heteromysinae). Crustaceana 86:487–506CrossRefGoogle Scholar
  54. Wittmann KJ, Ariani AP, Lagardère J-P (2014) Orders Lophogastrida Boas, 1883, Stygiomysida Tchindonoma, 1981, and Mysida Boas, 1883 (also known collectively as Mysidacea). In: von Vaupel Klein JC, Charmantier-Daures M, Schram FR (eds) Treatise on Zoology–Anatomy, Taxonomy, Biology. The Crustacea. Revised and updated, as well as extended from the Traité de Zoologie 4B (54):189–396, 404–406. Brill, LeidenGoogle Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Biological SciencesCalifornia State University Stanislaus, One University CircleTurlockUSA
  2. 2.Marine Invertebrates, South Australian MuseumAdelaideAustralia

Personalised recommendations