Marine Biodiversity

, Volume 46, Issue 2, pp 407–420 | Cite as

Macroalgal composition and community structure of the largest rhodolith beds in the world

  • P. S. Brasileiro
  • G. H. Pereira-Filho
  • R. G. Bahia
  • D. P. Abrantes
  • S. M. P. B. Guimarães
  • R. L. Moura
  • R. B. Francini-Filho
  • A. C. Bastos
  • G. M. Amado-Filho
Original Paper

Abstract

The Abrolhos Bank, encompassing a wide portion of the Brazilian continental shelf, harbors the world's largest rhodolith bed, which plays an important role in calcium carbonate production in the South Atlantic Ocean. Little is known about the community structure and species composition of this habitat. The aim of this study was to test the hypothesis that latitudinal differences exist in the community structure of rhodolith beds and their associated flora along the Abrolhos Bank. We sampled a total of 33 sites of rhodolith beds located in three regions—northern, central, and southern—of the Abrolhos Bank between depths of 20 and 70 m. Rhodolith density (rhod. m−2) within the beds ranged from 990 ± 347.6 to 57 ± 18.7, with mean diameter ranging from 9.4 ± 3.2 to 3.1 ± 1.4 cm. A total of 146 macroalgae species were identified, including 14 rhodolith-forming species of crustose coralline algae. Abrolhos Bank supports the world’s greatest species richness of rhodolith-forming CCA, with regional distinctiveness. Observed differences in bed structure among regions can be related to differences in shelf width, slope and depth. The studied rhodolith beds constitute a unique habitat supporting a distinctive diversity of associated organisms, and thus require special attention. We highlight the importance of local and regional differences for defining appropriate conservation strategies to protect the rhodolith bed diversity of Abrolhos Bank.

Keywords

Abrolhos Bank Mesophotic Percentage cover Associated flora Crustose coralline algae 

References

  1. Amado-Filho GM, Maneveldt G, Marins BV, Manso RCC, Pacheco MR, Guimarães SPB (2007) Structure of rhodolith beds from a depth gradient of 4 to 55 meters at the south of Espírito Santo State coast, Brazil. Cienc Mar 33(4):399–410Google Scholar
  2. Amado-Filho GM, Maneveldt G, Pereira-Filho GH, Manso RC, Bahia RG et al (2010) Seaweed diversity associated with a Brazilian tropical rhodolith bed. Cienc Mar 36:371–391CrossRefGoogle Scholar
  3. Amado-Filho GM, Moura RL, Bastos AC, Salgado LT, Sumida PYG et al (2012a) Rhodolith beds are major CaCO3 bio-factories in the Tropical South West Atlantic. Plos One 7(4):e35171CrossRefPubMedPubMedCentralGoogle Scholar
  4. Amado-Filho GM, Pereira-Filho GH, Bahia RG, Abrantes DP, Veras PC, Matheus Z (2012b) Occurrence and distribution of rhodolith beds on the Fernando de Noronha Archipelago of Brazil. Aquat Bot 101:41–45CrossRefGoogle Scholar
  5. Andrades R, Gomes MP, Pereira-Filho GH, Souza-Filho JF, Albuquerque CQ, Martins AS (2014) The influence of allochthonous macroalgae on the fish communities of tropical sandy beaches. Estuar Coast Shelf Sci 144:75–81CrossRefGoogle Scholar
  6. Avila E, Riosmena-Rodriguez R (2011) A preliminar evaluation of shallow-water rhodolith beds in Bahia Magdalena, Mexico. Braz J Oceanogr 59(4):365–375CrossRefGoogle Scholar
  7. Bahia RG, Abrantes DP, Brasileiro PS, Pereira-Filho GH, Amado-Filho GM (2010) Rhodolith bed structure along a depth gradient on the northern coast of Bahia State, Brazil. Braz J Oceanogr 58:323–337CrossRefGoogle Scholar
  8. Bahia RG, Riosmena-Rodriguez R, Maneveldt GW, Amado-Filho GM (2011) First report of Sporolithon ptychoides (Sporolithales, Corallinophycidae, Rhodophyta) for the Atlantic Ocean. Phycol Res 59:64–69CrossRefGoogle Scholar
  9. Bahia RG, Amado-Filho GM, Maneveldt GW, Adey WA, Johnson G et al (2014) Sporolithon tenue sp. nov. (Sporolithales, Corallinophycidae, Rhodophyta): A new rhodolith-forming species from the tropical southwestern Atlantic. Phycol Res 62:44–54CrossRefGoogle Scholar
  10. Bak RPM, Nieuwland G, Meesters EH (2005) Coral reef crisis in deep and shallow reefs: 30 years of constancy and change in reefs of Curacao and Bonaire. Coral Reefs 24:475–479CrossRefGoogle Scholar
  11. Basso D, Rodondi G, Bressan G (2011) A re-description of Lithothamnion crispatum and the status of Lithothamnion superpositum (Rhodophyta, Corallinales). Phycologia 50(2):144–155CrossRefGoogle Scholar
  12. Boogert NJ, Paterson DM, Laland KN (2006) The implications of niche construction and ecosystem engineering for conservation biology. Bioscience 56:570–578CrossRefGoogle Scholar
  13. Clarke KR, Warwick RM (1994) Change in marine communities: an approach to statistical analysis and interpretation. Plymouth Marine Laboratory, PlymouthGoogle Scholar
  14. Crain CM, Bertness MD (2006) Ecosystem engineering across environmental stress gradients: implications for conservation and management. Bioscience 56:211–216CrossRefGoogle Scholar
  15. Fabricius K, De'ath G (2001) Environmental factors associated with spatial distribution of crustose coralline algae on the Great Barrier Reef. Coral Reefs 19:303–309CrossRefGoogle Scholar
  16. Foster MS (2001) Rhodoliths: between rocks and soft places - Minireview. J Phycol 37:659–667CrossRefGoogle Scholar
  17. Foster MS, McConnico LM, Lundsten L, Wadsworth T, Kimball T et al (2007) Diversity and natural history of a Lithothamnion muelleri-Sargassum horridum community in the Gulf of California. Cienc Mar 33(4):367–384Google Scholar
  18. Foster M, Amado-Filho GM, Steller D, Riosmena-Rodriguez R, Kamenos N (2013) Rhodoliths and rhodoliths beds. Contribution of SCUBA diving to research and discovery in marine environments, vol 39, 39th edn. Smithsonian Institution Scholarly Press, Washington D.C, pp 143–156Google Scholar
  19. Francini-Filho RB, Coni EOC, Meirelles PM, Amado-Filho GM, Thompson FL et al (2013) Dynamics of Coral Reef Benthic Assemblages of the Abrolhos Bank, Eastern Brazil: Inferences on Natural and Anthropogenic Drivers. PLoS ONE 8(1):e54260CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gonchorosky J, Sales G, Belém MJC, Castro CB (1989) Importance, establishment and management plan of the Parque Nacional Marinho dos Abrolhos, Brazil. In: Neves C (ed) Coastlines of Brazil. American Society of Civil Engineers, New York, pp 185–194Google Scholar
  21. Harvey AS, Bird FL (2008) Community structure of a rhodolith bed from coldtemperate waters (southern Australia). Aust J Bot 56:437–450CrossRefGoogle Scholar
  22. Harvey AS, Woelkerling WJ (2007) A guide to nongeniculate coralline red algal (Corallinales, Rhodophyta) rhodolith identification. Cienc Mar 33(4):411–426Google Scholar
  23. Harvey AS, Phillips LE, Woelkerling WJ, Millar AJK (2006) The Corallinaceae, subfamily Mastophoroideae (Corallinales, Rhodophyta) in south-eastern Australia. Aust Syst Bot 19:387–429CrossRefGoogle Scholar
  24. Hellberg M (2007) Footprints on water: the genetic wake of dispersal among reefs. Coral Reefs 26:463–473CrossRefGoogle Scholar
  25. Hinojosa-Arango G, Maggs CA, Johnson M (2009) Like a rolling stone: the mobility of maerl (Corallinaceae) and the neutrality of the associated assemblages. Ecology 90(2):517–528CrossRefPubMedGoogle Scholar
  26. Kahng SE, Garcia-Sais JR, Spalding HL, Brokovich E, Wagner D et al (2010) Community ecology of mesophotic coral reef ecosystems. Coral Reefs 29:255–275CrossRefGoogle Scholar
  27. Keith SA, Kerswell AP, Connolly SR (2013) Global diversity of marine macroalgae: environmental conditions explain less variation in the tropics. Glob Ecol Biogeogr. doi:10.1111/geb.12132 Google Scholar
  28. Kohler KE, Gill SM (2006) Coral Point Count with Excel extensions (CPCe): A visual basic program for the determination of coral and substrate coverage using random point Ncount methodology. Comput Geosci 32:1259–1269CrossRefGoogle Scholar
  29. Konar B, Riosmena-Rodriguez R, Iken K (2006) Rhodolith bed: a newly discovered habitat in the North Pacific Ocean. Bot Mar 49:355–359CrossRefGoogle Scholar
  30. Leão ZMAN, Kikuchi RKP (2001) The Abrolhos Reefs of Brazil. In: Seeliger U, Kjerfve B (eds) Coastal Marine Ecosystems of Latin America. Springer-Verlag, Berlin, pp 83–96CrossRefGoogle Scholar
  31. Lesser MP, Slattery M, Leichter JJ (2009) Ecology of mesophotic reefs. J Exp Mar Biol Ecol 375(1–2):1–8CrossRefGoogle Scholar
  32. McConnico LA, Foster MS, Steller DL, Riosmena-Rodríguez R (2014) Population biology of a long-lived rhodolith: the consequences of becoming old and large. Mar Ecol Prog Ser 504:109–118CrossRefGoogle Scholar
  33. Milliman JD and Amaral CAB (1974) Economic potential of Brazilian continental margin sediments. Anais do XXVIII Congresso Brasileiro de Geologia 3:335–344Google Scholar
  34. Moura RL, Secchin NA, Amado-Filho GM, Francini-Filho RB, Freitas MO et al (2013) Spatial patterns of benthic megahabits and conservation planning in the Abrolhos Bank. Cont Shelf Res 70:109–117CrossRefGoogle Scholar
  35. Neill KF, Nelson WA, Archino RD, Leduc D, Farr TJ (2014) Northern New Zealand rhodoliths: assessing faunal and floral diversity in physically contrastating beds. Mar Biodivers. doi:10.1007/s12526-014-0229-0 Google Scholar
  36. Nelson W, D’Archino R, Neill K, Farr T (2014) Macroalgal diversity associated with rhodolith beds in northern New Zealand. Cryptogam Algol 35(1):27–47CrossRefGoogle Scholar
  37. Pascelli C, Riul P, Riosmena-Rodriguez R, Schemer F, Nunes M, Hall-Spencer J, Oliveira EC, Horta P (2013) Seasonal and depth-driven changes in rhodolith bed structure and associated macroalgae off Arvoredo island (southeastern Brazil). Aquat Bot 111:62–65CrossRefGoogle Scholar
  38. Pereira-Filho GH, Amado-Filho GM, Moura RL, Bastos AC, Guimarães SM et al (2012) Extensive rhodolith beds cover the summits of southwestern Atlantic Ocean seamounts. J Coast Res 28:261–269CrossRefGoogle Scholar
  39. Riul P, Lacouth P, Pagliosa PR, Christoffersen ML, Horta PA (2009) Rhodolith beds at the easternmost extreme of South America: Community structure of an endangered environment. Aquat Bot 90:315–320CrossRefGoogle Scholar
  40. Segal B, Castro CB (2011) Coral community structure and sedimentation at different distances from the coast of the Abrolhos Bank, Brazil. Braz J Oceanogr 59(2):119–129CrossRefGoogle Scholar
  41. Steller DL, Foster MS (1995) Environmental factors influencing distribution and morphology of rhodoliths in Bahía Concepcion, BCS, Mexico. J Exp Mar Biol Ecol 194:201–212CrossRefGoogle Scholar
  42. Steller DL, Riosmena-Rodriguez R, Foster MS, Roberts C (2003) Rhodolith bed diversity in the Gulf of California: the importance of rhodolith structure and consequences of anthropogenic disturbances. Aquat Conserv Mar Freshwat Ecosyst 13:S5–S20CrossRefGoogle Scholar
  43. Steller DL, Hernández-Ayón JM, Riosmena-Rodríguez R, Cabello-Pasini A (2007) Effect of temperature on photosynthesis, growth and calcification rates of free-living coralline algae Lithophyllum margaritae. Cienc Mar 33(4):441–456Google Scholar
  44. Torrano-Silva BN, Oliveira EC (2013) Macrophytobenthic flora of the Abrolhos Archipelago and the Sebastião Gomes Reef, Brazil. Cont Shelf Res 70:150–158CrossRefGoogle Scholar
  45. Villas-Boas AB, Riosmena-Rodriguez R, Amado-Filho GM, Maneveldt G, Figueiredo MAO (2009) Rhodolith-forming species of Lithophyllum (Corallinales; Rhodophyta) from Espírito Santo State, Brazil, including the description of L. depressum sp. nov. Phycologia 48(4):237–248CrossRefGoogle Scholar
  46. Woelkerling WJ, Harvey A (1993) An account of Southern Australian Species of Mesophyllum (Corallinaceae, Rhodophyta). Aust Syst Bot 6:571–637CrossRefGoogle Scholar
  47. Zar JH (1999) Biostatistical analysis, 4th edn. Prentice-Hall, New JerseyGoogle Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • P. S. Brasileiro
    • 1
  • G. H. Pereira-Filho
    • 2
  • R. G. Bahia
    • 1
  • D. P. Abrantes
    • 1
  • S. M. P. B. Guimarães
    • 3
  • R. L. Moura
    • 4
  • R. B. Francini-Filho
    • 5
  • A. C. Bastos
    • 6
  • G. M. Amado-Filho
    • 1
  1. 1.Instituto de Pesquisas Jardim Botânico do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Instituto do MarUniversidade Federal de São PauloPonta da Praia, SantosBrazil
  3. 3.Núcleo de Pesquisa em Ficologia, Secretaria do Meio Ambiente do Estado de São PauloInstituto de BotânicaÁgua Funda, São PauloBrazil
  4. 4.Departamento de Biologia Marinha, Instituto de Biologia, Centro de Ciências da SaúdeUniversidade Federal do Rio de JaneiroCidade Universitária, Rio de JaneiroBrazil
  5. 5.Centro de Ciências Aplicadas e EducaçãoUniversidade Federal da ParaíbaRio TintoBrazil
  6. 6.Departamento de OceanografiaUniversidade Federal do Espírito SantoVitóriaBrazil

Personalised recommendations