Marine Biodiversity

, Volume 46, Issue 1, pp 299–301 | Cite as

Soft corals provide microhabitat for camouflaged juveniles of the Blackspotted wrasse Macropharyngodon meleagris (Labridae)

  • Arthur R. Bos
Short Communication


Juveniles of the Blackspotted wrasse Macropharyngodon meleagris (Valenciennes, 1839) were observed to solely inhabit xeniid soft corals in shallow exposed reefs in Negros Island (central Philippines). Juvenile coloration (including patterns and eyespots) and adapted swimming behavior may support blending in with the soft coral environment and avoiding predation. This report constitutes the first description of juvenile wrasses occupying niches within a soft coral microhabitat by using their unique coloration patterns and swimming behavior.


Anthozoa Coral reef Eyespot Indo-Pacific Philippines Xeniidae 



Identification of soft corals was confirmed by L.P. van Ofwegen (Naturalis Biodiversity Center). S. Nitza and three anonymous reviewers are acknowledged for providing valuable feedback on an earlier version of the manuscript.


  1. Bos AR (2011) Fish density, biomass, and species overview of the dive hub marine protected area, Antulang, Si-it, Siaton, Negros Oriental, Philippines. Netherlands Center for Biodiversity Naturalis, Leiden, p 18Google Scholar
  2. Bos AR (2012) Fishes (Gobiidae and Labridae) associated with the mushroom coral Heliofungia actiniformis (Scleractinia: Fungiidae) in the Philippines. Coral Reefs 31:133CrossRefGoogle Scholar
  3. Bos AR, Hoeksema BW (2015) Cryptobenthic fishes and co-inhabiting shrimps associated with the mushroom coral Heliofungia actiniformis (Fungiidae) in the Davao Gulf, Philippines. Environ Biol Fish 98. doi.  10.1007/s10641-014-0374-0
  4. Bos AR, Gumanao GS, van Katwijk MM, Mueller B, Saceda MM, Tejada RP (2011a) Ontogenetic habitat shift, population growth, and burrowing behavior of the Indo-Pacific beach star, Archaster typicus (Echinodermata; Asteroidea). Mar Biol 158:639–648CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bos AR, Gumanao GS, Mueller B (2011b) Feeding biology and symbiotic relationships of the corallimorpharian Paracorynactis hoplites (Anthozoa: Hexacorallia). Raff Bull Zool 59(2):245–250Google Scholar
  6. Brooker RM, Munday PL, Chivers DP, Jones GP (2015) You are what you eat: diet-induced chemical crypsis in a coral-feeding reef fish. Proc R Soc B 282:20141887CrossRefPubMedPubMedCentralGoogle Scholar
  7. Fabricius KE, Alderslade P (2001) Soft corals and sea fans: a comprehensive guide to the tropical shallow water genera of the central-west Pacific, the Indian Ocean and the Red Sea. Australian Institute of Marine Science, Townsville, p 264Google Scholar
  8. Froese R, Pauly D (2014) Fish-Base. (Accessed 22 July 2014)
  9. Gagliano M, Depczynski M (2013) Spot the difference: Mimicry in a coral reef fish. PLoS ONE 8(2):e55938CrossRefPubMedPubMedCentralGoogle Scholar
  10. Gosliner TM, Behrens DW, Williams GC (1996) Coral reef animals of the Indo-Pacific; animal life from Africa to Hawaii exclusive of the vertebrates. Sea Challengers, MontereyGoogle Scholar
  11. Grol MGG, Ryper AL, Nagelkerken I (2014) Growth potential and predation risk drive ontogenetic shifts among nursery habitats in a coral reef fish. Mar Ecol Prog Ser 502:229–244CrossRefGoogle Scholar
  12. Hoeksema BW, Crowther AL (2011) Masquerade, mimicry and crypsis of the polymorphic sea anemone Phyllodiscus semoni and its aggregations in South Sulawesi. Contrib Zool 80:251–268Google Scholar
  13. Kelley JL, Fitzpatrick JL, Merilaita S (2013) Spots and stripes: ecology and colour pattern evolution in butterflyfishes. Proc R Soc B 280:20122730CrossRefPubMedPubMedCentralGoogle Scholar
  14. Marin I (2011) Two new species of alcyonacean-associated shrimp genus Alcyonohippolyte Marin, Okuno & Chan, 2010 (Crustacea: Decapoda: Hippolytidae) from the great barrier reef of Australia. Zootaxa 3123:49–59Google Scholar
  15. Marin I, Okuno J, Chan TY (2011) On the “Hippolyte commensalis Kemp, 1925” species complex (Decapoda, Caridea, Hippolytidae), with the description of two new species from the Indo-West Pacific. Zootaxa 2768:32–54Google Scholar
  16. Neudecker S (1989) Eye camouflage and false eyespots: chaetodontid responses to predators. Environ Biol Fish 25:143–157CrossRefGoogle Scholar
  17. Ocaña O, den Hartog JC, Brito A, Bos AR (2010) On Pseudocorynactis species and another related genus from the Indo-Pacific (Anthozoa: Corallimorphidae). Rev Acad Canar Cienc XXI(3–4):9–34Google Scholar
  18. Read CI, Bellwood DR, van Herwerden L (2006) Ancient origins of Indo-Pacific coral reef fish biodiversity: a case study of the leopard wrasses (Labridae: Macropharyngodon). Mol Phylogenet Evol 38:808–819CrossRefPubMedGoogle Scholar
  19. Schmitt EF, Sluka RD, Sullivan-Sealey KM (2002) Evaluating the use of roving diver and transect surveys to assess the coral reef fish assemblage of southeastern Hispaniola. Coral Reefs 21:216–223Google Scholar
  20. Siebeck UE, Marshall NJ (2001) Ocular media transmission of coral reef fish – can coral reef fish see ultraviolet light? Vision Res 41:133–149CrossRefPubMedGoogle Scholar
  21. Westneat MW (2001) Labridae. Wrasses, hogfishes, razorfishes, corises, tuskfishes. In: Carpenter KE, Niem V (eds) FAO species identification guide for fishery purposes. The living marine resources of the Western Central Pacific. Vol. 6. Bony fishes part 4 (Labridae to Latimeriidae), estuarine crocodiles. FAO, Rome, pp 3381–3467Google Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Biology, School of Sciences and EngineeringAmerican University in CairoNew CairoEgypt
  2. 2.Department of Marine ZoologyNaturalis Biodiversity CenterLeidenThe Netherlands

Personalised recommendations