Marine Biodiversity

, Volume 45, Issue 3, pp 433–451 | Cite as

Guidelines for DNA taxonomy, with a focus on the meiofauna

  • Diego Fontaneto
  • Jean-François Flot
  • Cuong Q. Tang
Meioscool

Abstract

Describing biological diversity is a challenging endeavour, especially for the small, cryptic animals that make up the meiofauna. The field of DNA taxonomy, i.e., the use of DNA to delineate species boundaries, is rapidly growing and changing; herein we review the recent advances in the acquisition of DNA sequence data and the analytical tools for DNA-based species delimitation, with a focus on applications to the meiofauna. After providing general guidelines on the data collection and analysis steps (sampling design, sequencing, phasing of nuclear markers, and sequence alignment), we explain the rationale and usage of several widely used or promising methods developed for delineating species from single-locus data sets (distance-based DNA barcoding, automated barcode gap discovery, K/θ, generalized mixed Yule–coalescent models, Poisson tree process model, and haplowebs). As it is increasingly recognised that several loci are required to delineate species accurately, we then briefly outline multilocus species delimitation approaches (Structure, Structurama, Bayesian phylogenetics & phylogeography, SpedeSTEM, O’Meara’s heuristic search, and several newly published Bayesian approaches based on the multispecies coalescent).

Keywords

ABGD BP&P Biodiversity COI Cryptic species GMYC Identification PTP 

Notes

Acknowledgments

We thank Daniela Zappilli for organising a workshop on meiofaunal studies in Brest and for inviting us to write this manuscript. We thank also Timothy G. Barraclough, William C. Birky Jr, Bryan Carstens, Simon Dellicour, Christophe Douady, Florian Malard, Nicolas Puillandre, Fabio Stoch, Ziheng Yang, and two anonymous reviewers for comments and suggestions. J.-F.F. is supported by the European Research Council (ERC-2012-AdG 322790).

References

  1. Adjeroud M, Guérécheau A, Vidal-Dupiol J et al (2014) Genetic diversity, clonality and connectivity in the scleractinian coral Pocillopora damicornis: a multi-scale analysis in an insular, fragmented reef system. Mar Biol 161:531–541CrossRefGoogle Scholar
  2. Adolfsson S, Michalakis Y, Paczesniak D et al (2010) Evaluation of elevated ploidy and asexual reproduction as alternative explanations for geographic parthenogenesis in Eucypris virens ostracods. Evolution 64:986–997PubMedCrossRefGoogle Scholar
  3. Avise JC, Arnold J, Ball RM et al (1987) Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu Rev Ecol Syst 18:489–522CrossRefGoogle Scholar
  4. Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48PubMedCrossRefGoogle Scholar
  5. Baretta-Bekker JG, Duursma EK, Kuipers BR (eds) (1998) Encyclopedia of marine sciences. Springer, Berlin, pp 1–357CrossRefGoogle Scholar
  6. Bell DA, DeMarini DM (1991) Excessive cycling converts PCR products to random-length higher molecular weight fragments. Nucleic Acids Res 19:5079PubMedCentralPubMedCrossRefGoogle Scholar
  7. Bellati A, Carranza S, Garcia-Porta J, Fasola M, Sindaco R (2015) Cryptic diversity within the Anatololacerta species complex (Squamata: Lacertidae) in the Anatolian Peninsula: evidence from a multi-locus approach. Mol Phylogenet Evol 82:219–233PubMedCrossRefGoogle Scholar
  8. Benson DA, Cavanaugh M, Clark K et al (2013) GenBank. Nucleic Acids Res 41:D36–D42PubMedCentralPubMedCrossRefGoogle Scholar
  9. Bergsten J, Bilton DT, Fujisawa T et al (2012) The effect of geographical scale of sampling on DNA barcoding. Syst Biol 61:851–869PubMedCentralPubMedCrossRefGoogle Scholar
  10. Bik HM, Sung W, De Ley P et al (2012) Metagenetic community analysis of microbial eukaryotes illuminates biogeographic patterns in deep-sea and shallow water sediments. Mol Ecol 21:1048–1059PubMedCentralPubMedCrossRefGoogle Scholar
  11. Birky CW (2013) Species detection and identification in sexual organisms using population genetic theory and DNA sequences. PLoS One 8:e52544PubMedCentralPubMedCrossRefGoogle Scholar
  12. Birky CW, Wolf C, Maughan H et al (2005) Speciation and selection without sex. Hydrobiologia 546:29–45CrossRefGoogle Scholar
  13. Birky CW, Adams J, Gemmel M, Perry J (2010) Using population genetic theory and DNA sequences for species detection and identification in asexual organisms. PLoS One 5:e10609PubMedCentralPubMedCrossRefGoogle Scholar
  14. Birky CW, Ricci C, Melone G, Fontaneto D (2011) Integrating DNA and morphological taxonomy to describe diversity in poorly studied microscopic animals: new species of the genus Abrochtha Bryce, 1910 (Rotifera: Bdelloidea: Philodinavidae). Zool J Linn Soc 161:723–734CrossRefGoogle Scholar
  15. Blanco-Bercial L, Cornils A, Copley N, Bucklin A (2014) DNA barcoding of marine copepods: assessment of analytical approaches to species identification. PLoS Curr Tree Life 6:ecurrents.tol.cdf8b74881f87e3b01d56b43Google Scholar
  16. Blin N, Stafford DW (1976) A general method for isolation of high molecular weight DNA from eukaryotes. Nucleic Acids Res 3:2303–2308PubMedCentralPubMedCrossRefGoogle Scholar
  17. Bode SNS, Adolfsson S, Lamatsch DK et al (2010) Exceptional cryptic diversity and multiple origins of parthenogenesis in a freshwater ostracod. Mol Phylogenet Evol 54:542–552PubMedCrossRefGoogle Scholar
  18. Bouckaert R, Heled J, Kühnert D et al (2014) BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput Biol 10:e1003537PubMedCentralPubMedCrossRefGoogle Scholar
  19. Brandão SN, Sauer J, Schön I (2010) Circumantarctic distribution in Southern Ocean benthos? A genetic test using the genus Macroscapha (Crustacea, Ostracoda) as a model. Mol Phylogenet Evol 55:1055–1069PubMedCrossRefGoogle Scholar
  20. Bull JJ, Huelsenbeck JP, Cunningham CW, Swofford DL, Waddell PJ (1993) Partitioning and combining data in phylogenetic analysis. Syst Biol 42:384–397CrossRefGoogle Scholar
  21. Butlin R, Bridle J, Schluter D (eds) (2009) Speciation and patterns of diversity. Cambridge University Press, Cambridge, pp 1–346CrossRefGoogle Scholar
  22. Calvignac S, Konecny L, Malard F, Douady CJ (2011) Preventing the pollution of mitochondrial datasets with nuclear mitochondrial paralogs (numts). Mitochondrion 11:246–254PubMedCrossRefGoogle Scholar
  23. Camargo A, Morando M, Avila LJ, Sites JW (2012) Species delimitation with ABC and other coalescent-based methods: a test of accuracy with simulations and an empirical example with lizards of the Liolaemus darwinii complex (Squamata: Liolaemidae). Evolution 66:2834–2849PubMedCrossRefGoogle Scholar
  24. Carson H (1957) The species as a field for recombination. In: Mayr E (ed) The species problem. American Association for the Advancement of Science, Washington, pp 23–38Google Scholar
  25. Carstens BC, Pelletier TA, Reid NM, Satler JD (2013) How to fail at species delimitation. Mol Ecol 22:4369–4383PubMedCrossRefGoogle Scholar
  26. Casiraghi M, Labra M, Ferri E et al (2010) DNA barcoding: a six-question tour to improve users’ awareness about the method. Brief Bioinform 11:440–453PubMedCrossRefGoogle Scholar
  27. Cassens I, Mardulyn P, Milinkovitch M (2005) Evaluating intraspecific “network” construction methods using simulated sequence data: do existing algorithms outperform the global maximum parsimony approach? Syst Biol 54:363–372PubMedCrossRefGoogle Scholar
  28. Clark AG (1990) Inference of haplotypes from PCR-amplified samples of diploid populations. Mol Biol Evol 7:111–122PubMedGoogle Scholar
  29. Collins RA, Cruickshank RH (2012) The seven deadly sins of DNA barcoding. Mol Ecol Resour 13:969–975PubMedGoogle Scholar
  30. Collins RA, Cruickshank RH (2014) Known knowns, known unknowns, unknown unknowns and unknown knowns in DNA barcoding: a comment on Dowton et al. Syst Biol 63:1005–1009PubMedCrossRefGoogle Scholar
  31. Cornils A, Held C (2014) Evidence of cryptic and pseudocryptic speciation in the Paracalanus parvus species complex (Crustacea, Copepoda, Calanoida). Front Zool 11:1–17CrossRefGoogle Scholar
  32. Creer S, Fonseca VG, Porazinska DL et al (2010) Ultrasequencing of the meiofaunal biosphere: practice, pitfalls and promises. Mol Ecol 19:4–20PubMedCrossRefGoogle Scholar
  33. Curini-Galletti M, Artois TJ, Delogu V et al (2012) Patterns of diversity in soft-bodied meiofauna: dispersal ability and body size matter. PLoS One 7:e33801PubMedCentralPubMedCrossRefGoogle Scholar
  34. Davey JL, Blaxter ML (2010) RADseq: next-generation population genetics. Brief Funct Genomics 9:416–423PubMedCentralPubMedCrossRefGoogle Scholar
  35. de Queiroz K (2007) Species concepts and species delimitation. Syst Biol 56:879–886Google Scholar
  36. Deiner K, Walser J-C, Mächler E, Altermatt F (2015) Choice of capture and extraction methods affect detection of freshwater biodiversity from environmental DNA. Biol Conserv 183:53–63CrossRefGoogle Scholar
  37. Dellicour S, Flot J-F (2015) Delimiting species-poor datasets using single molecular markers: a study of barcode gaps, haplowebs and GMYC. Syst BiolGoogle Scholar
  38. Dover G (1982) Molecular drive: a cohesive mode of species evolution. Nature 299:111–117PubMedCrossRefGoogle Scholar
  39. Dowton M, Meiklejohn K, Cameron SL, Wallman J (2014) A preliminary framework for DNA barcoding, incorporating the multispecies coalescent. Syst Biol 63:639–644PubMedCrossRefGoogle Scholar
  40. Doyle JJ (1995) The irrelevance of allele tree topologies for species delimitation, and a non-topological alternative. Syst Bot 20:574–588CrossRefGoogle Scholar
  41. Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214PubMedCentralPubMedCrossRefGoogle Scholar
  42. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797PubMedCentralPubMedCrossRefGoogle Scholar
  43. Ence DD, Carstens BC (2011) SpedeSTEM: a rapid and accurate method for species delimitation. Mol Ecol Resour 11:473–480PubMedCrossRefGoogle Scholar
  44. Esselstyn JA, Evans BJ, Sedlock JL, Anwarali Khan FA, Heaney LR (2012) Single-locus species delimitation: a test of the mixed Yule–coalescent model, with an empirical application to Philippine round-leaf bats. Proc R Soc Lond B 279:3678–3686Google Scholar
  45. Estoup A, Largiadèr CR, Perrot E, Chourrout D (1996) Rapid one-tube DNA extraction for reliable PCR detection of fish polymorphic markers and transgenes. Mol Mar Biol Biotech 5:295–298Google Scholar
  46. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620PubMedCrossRefGoogle Scholar
  47. Ezard THG, Fujisawa T, Barraclough TG (2009) splits: SPecies’ LImits by Threshold Statistics. http://R-Forge.R-project.org/projects/splits/
  48. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedCentralPubMedGoogle Scholar
  49. Flot J-F (2007) CHAMPURU 1.0: a computer software for unravelling mixtures of two DNA sequences of unequal lengths. Mol Ecol Notes 7:974–977CrossRefGoogle Scholar
  50. Flot J-F (2010a) Vers une taxonomie moléculaire des amphipodes du genre Niphargus: exemples d’utilisation de séquences d’ADN pour l’identification des espèces. Bull Soc Sci Nat Ouest Fr 32:62–68Google Scholar
  51. Flot J-F (2010b) SeqPHASE: a web tool for interconverting phase input/output files and fasta sequence alignments. Mol Ecol Resour 10:162–166PubMedCrossRefGoogle Scholar
  52. Flot J-F, Tillier S (2007) The mitochondrial genome of Pocillopora (Cnidaria: Scleractinia) contains two variable regions: the putative D-loop and a novel ORF of unknown function. Gene 401:80–87PubMedCrossRefGoogle Scholar
  53. Flot J-F, Tillier A, Samadi S, Tillier S (2006) Phase determination from direct sequencing of length-variable DNA regions. Mol Ecol Notes 6:627–630CrossRefGoogle Scholar
  54. Flot J-F, Magalon H, Cruaud C et al (2008) Patterns of genetic structure among Hawaiian corals of the genus Pocillopora yield clusters of individuals that are compatible with morphology. C R Biol 331:239–247PubMedCrossRefGoogle Scholar
  55. Flot J-F, Couloux A, Tillier S (2010) Haplowebs as a graphical tool for delimiting species: a revival of Doyle’s “field for recombination” approach and its application to the coral genus Pocillopora in Clipperton. BMC Evol Biol 10:372PubMedCentralPubMedCrossRefGoogle Scholar
  56. Flot J-F, Blanchot J, Charpy L et al (2011) Incongruence between morphotypes and genetically delimited species in the coral genus Stylophora: phenotypic plasticity, morphological convergence, morphological stasis or interspecific hybridization? BMC Ecol 11:22PubMedCentralPubMedCrossRefGoogle Scholar
  57. Flot J-F, Dahl M, André C (2013) Lophelia pertusa corals from the Ionian and Barents seas share identical nuclear ITS2 and near-identical mitochondrial genome sequences. BMC Res Notes 6:144PubMedCentralPubMedCrossRefGoogle Scholar
  58. Flot J-F, Bauermeister J, Brad T et al (2014) Niphargus-Thiothrix associations may be widespread in sulphidic groundwater ecosystems: evidence from southeastern Romania. Mol Ecol 23:1405–1417PubMedCentralPubMedCrossRefGoogle Scholar
  59. Folmer O, Black M, Hoeh W et al (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299PubMedGoogle Scholar
  60. Fonseca VG, Carvalho GR, Sung W et al (2010) Second-generation environmental sequencing unmasks marine metazoan biodiversity. Nat Commun 1:98PubMedCentralPubMedCrossRefGoogle Scholar
  61. Fonseca VG, Carvalho GR, Nichols B et al (2014) Metagenetic analysis of patterns of distribution and diversity of marine meiobenthic eukaryotes. Glob Ecol Biogeogr 23:1293–1302CrossRefGoogle Scholar
  62. Fontaneto D (2014) Molecular phylogenies as a tool to understand diversity in rotifers. Int Rev Hydrobiol 99:178–187CrossRefGoogle Scholar
  63. Fontaneto D, Herniou EA, Boschetti C et al (2007) Independently evolving species in asexual bdelloid rotifers. PLoS Biol 5:e87PubMedCentralPubMedCrossRefGoogle Scholar
  64. Fontaneto D, Kaya M, Herniou EA, Barraclough TG (2009) Extreme levels of hidden diversity in microscopic animals (Rotifera) revealed by DNA taxonomy. Mol Phylogenet Evol 53:182–189PubMedCrossRefGoogle Scholar
  65. Fontaneto D, Iakovenko N, Eyres I et al (2011) Cryptic diversity in the genus Adineta Hudson & Gosse, 1886 (Rotifera: Bdelloidea: Adinetidae): a DNA taxonomy approach. Hydrobiologia 662:27–33CrossRefGoogle Scholar
  66. Fourment M, Gibbs M (2006) PATRISTIC: a program for calculating patristic distances and graphically comparing the components of genetic change. BMC Evol Biol 6:1PubMedCentralPubMedCrossRefGoogle Scholar
  67. Freeman JL, Perry GH, Feuk L et al (2006) Copy number variation: new insights in genome diversity. Genome Res 16:949–961PubMedCrossRefGoogle Scholar
  68. Fujisawa T, Barraclough TG (2013) Delimiting species using single-locus data and the Generalized Mixed Yule Coalescent (GMYC) approach: a revised method and evaluation on simulated datasets. Syst Biol 62:707–724PubMedCentralPubMedCrossRefGoogle Scholar
  69. Fujita MK, Leaché AD, Burbrink FT, McGuire JA, Moritz C (2012) Coalescent-based species delimitation in an integrative taxonomy. Trends Ecol Evol 27:480–488PubMedCrossRefGoogle Scholar
  70. Funk DJ, Omland KE (2003) Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annu Rev Ecol Evol Syst 34:397–423CrossRefGoogle Scholar
  71. Garza JC, Freimer NB (1996) Homoplasy for size at microsatellite loci in humans and chimpanzees. Genome Res 6:211–217PubMedCrossRefGoogle Scholar
  72. Garza JC, Slatkin M, Freimer NB (1995) Microsatellite allele frequencies in humans and chimpanzees, with implications for constraints on allele size. Mol Biol Evol 12:594–603PubMedGoogle Scholar
  73. Gaston KJ, Blackburn TM (2000) Pattern and process in macroecology. Blackwell Publishing, Oxford, pp 1–377CrossRefGoogle Scholar
  74. Giere O (2009) Meiobenthology the microscopic motile fauna of aquatic sediments. 1–527Google Scholar
  75. Gollner S, Fontaneto D, Arbizu PM (2011) Molecular taxonomy confirms morphological classification of deep-sea hydrothermal vent copepods (Dirivultidae) and suggests broad physiological tolerance of species and frequent dispersal along ridges. Mar Biol 158:221–231CrossRefGoogle Scholar
  76. Grummer JA, Bryson RW, Reeder TW (2014) Species delimitation using Bayes factors: simulations and application to the Sceloporus scalaris species group (Squamata: Phrynosomatidae). Syst Biol 63:119–133PubMedCrossRefGoogle Scholar
  77. Hare MP, Palumbi SR (1999) The accuracy of heterozygous base calling from diploid sequence and resolution of haplotypes using allele-specific sequencing. Mol Ecol 8:1750–1752PubMedCrossRefGoogle Scholar
  78. Hausdorf B, Hennig C (2010) Species delimitation using dominant and codominant multilocus markers. Syst Biol 59:491–503PubMedCrossRefGoogle Scholar
  79. Hebert PDN, Cywinska A, Ball SL, DeWaard JR (2003) Biological identifications through DNA barcodes. Proc R Soc Lond B 270:313–321CrossRefGoogle Scholar
  80. Hebert PDN, Stoeckle MY, Zemlak TS, Francis CM (2004) Identification of birds through DNA barcodes. PLoS Biol 2:e312PubMedCentralPubMedCrossRefGoogle Scholar
  81. Heled J, Drummond AJ (2010) Bayesian inference of species trees from multilocus data. Mol Biol Evol 27:570–580PubMedCentralPubMedCrossRefGoogle Scholar
  82. Hellberg ME (2006) No variation and low synonymous substitution rates in coral mtDNA despite high nuclear variation. BMC Evol Biol 6:24PubMedCentralPubMedCrossRefGoogle Scholar
  83. Hey J (2009) On the arbitrary identification of real species. In: Butlin RK, Bridle J, Schluter D (eds) Speciat. Patterns divers. Cambridge University Press, Cambridge, pp 15–28CrossRefGoogle Scholar
  84. Hillis DM, Moritz C, Porter CA, Baker RJ (1991) Evidence for biased gene conversion in concerted evolution of ribosomal DNA. Science 251:308–310PubMedCrossRefGoogle Scholar
  85. Hodges E, Xuan Z, Balija V et al (2007) Genome-wide in situ exon capture for selective resequencing. Nat Genet 39:1522–1527PubMedCrossRefGoogle Scholar
  86. Huang D, Meier R, Todd PA, Chou LM (2008) Slow mitochondrial COI sequence evolution at the base of the metazoan tree and its implications for DNA barcoding. J Mol Evol 66:167–174PubMedCrossRefGoogle Scholar
  87. Huelsenbeck JP, Andolfatto P (2007) Inference of population structure under a Dirichlet process model. Genetics 175:1787–1802PubMedCentralPubMedCrossRefGoogle Scholar
  88. Huelsenbeck JP, Andolfatto P, Huelsenbeck ET (2011) Structurama: Bayesian inference of population structure. Evol Bioinforma 2011:55–59CrossRefGoogle Scholar
  89. Iakovenko NS, Kašparová E, Plewka M, Janko K (2013) Otostephanos (Rotifera, Bdelloidea, Habrotrochidae) with the description of two new species. Syst Biodivers 11:477–494CrossRefGoogle Scholar
  90. Jones M, Ghoorah A, Blaxter M (2011) jMOTU and taxonerator: turning DNA barcode sequences into annotated operational taxonomic units. PLoS ONE 6(4):e19259PubMedCentralPubMedCrossRefGoogle Scholar
  91. Jones G, Aydin Z, Oxelman B (2014) DISSECT: an assignment-free Bayesian discovery method for species delimitation under the multispecies coalescent. Bioinformatics. doi:10.1093/bioinformatics/btu770
  92. Jörger KM, Norenburg JL, Wilson NG, Schrödl M (2012) Barcoding against a paradox? Combined molecular species delineations reveal multiple cryptic lineages in elusive meiofaunal sea slugs. BMC Evol Biol 12:245PubMedCentralPubMedCrossRefGoogle Scholar
  93. Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism, vol 3. Academic, New York, pp 21–132CrossRefGoogle Scholar
  94. Kånneby T, Todaro MA, Jondelius U (2012) A phylogenetic approach to species delimitation in freshwater Gastrotricha from Sweden. Hydrobiologia 683:185–202CrossRefGoogle Scholar
  95. Katoh K, Asimenos G, Toh H (2009) Multiple alignment of DNA sequences with MAFFT. Methods Mol Biol 537:39–64PubMedCrossRefGoogle Scholar
  96. Kekkonen M, Hebert PDN (2014) DNA barcode-based delineation of putative species: efficient start for taxonomic workflows. Mol Ecol Resour 14:706–715PubMedCentralPubMedCrossRefGoogle Scholar
  97. Kieneke A, Martínez Arbizu PM, Fontaneto D (2012) Spatially structured populations with a low level of cryptic diversity in European marine Gastrotricha. Mol Ecol 21:1239–1254PubMedCrossRefGoogle Scholar
  98. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120PubMedCrossRefGoogle Scholar
  99. Kircher M, Kelso J (2010) High-throughput DNA sequencing – concepts and limitations. Bioessays 32:524–536Google Scholar
  100. Knauth S, Schmidt H, Tippkötter R (2013) Comparison of commercial kits for the extraction of DNA from paddy soils. Lett Appl Microbiol 56:222–228PubMedCrossRefGoogle Scholar
  101. Kornobis E, Pálsson S (2013) The ITS region of groundwater amphipods: length, secondary structure and phylogenetic information content in Crangonyctoids and Niphargids. J Zool Syst Evol Res 51:19–28CrossRefGoogle Scholar
  102. Koufopanou V, Burt A, Taylor JW (1997) Concordance of gene genealogies reveals reproductive isolation in the pathogenic fungus Coccidioides immitis. Proc Natl Acad Sci U S A 94:5478–5482PubMedCentralPubMedCrossRefGoogle Scholar
  103. Kubatko LS, Carstens BC, Knowles LL (2009) STEM: species tree estimation using maximum likelihood for gene trees under coalescence. Bioinformatics 25:971–973PubMedCrossRefGoogle Scholar
  104. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359PubMedCentralPubMedCrossRefGoogle Scholar
  105. Leaché AD, Fujita MK, Minin V, Bouckaert RR (2014) Species delimitation using genome-wide SNP data. Syst Biol 63:534–542Google Scholar
  106. Leasi F, Norenburg JL (2014) The necessity of DNA taxonomy to reveal cryptic diversity and spatial distribution of meiofauna, with a focus on Nemertea. PLoS One 9:e104385PubMedCentralPubMedCrossRefGoogle Scholar
  107. Leasi F, Tang CQ, De Smet WH, Fontaneto D (2013) Cryptic diversity with wide salinity tolerance in the putative euryhaline Testudinella clypeata (Rotifera, Monogononta). Zool J Linn Soc 168:17–28CrossRefGoogle Scholar
  108. Lefébure T, Douady CJ, Gouy M, Gibert J (2006) Relationship between morphological taxonomy and molecular divergence within Crustacea: proposal of a molecular threshold to help species delimitation. Mol Phylogenet Evol 40:435–447PubMedCrossRefGoogle Scholar
  109. Li X (2012) Molecular and evolutionary insights into sexual marine mammals and asexual bdelloid rotifers. PhD thesis: University of Namur 1–181Google Scholar
  110. Li H, Handsaker B, Wysoker A et al (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078–2079Google Scholar
  111. Lim GS, Balke M, Meier R (2012) Determining species boundaries in a world full of rarity: singletons, species delimitation methods. Syst Biol 61:165–169PubMedCrossRefGoogle Scholar
  112. Liu L, Pearl DK, Brumfield RT, Edwards SV (2008) Estimating species trees using multiple-allele DNA sequence data. Evolution 62:2080–2091Google Scholar
  113. Lohse K (2009) Can mtDNA barcodes be used to delimit species? A response to Pons et al. (2006). Syst Biol 58:439–442PubMedCrossRefGoogle Scholar
  114. Lorion J, Buge B, Cruaud C, Samadi S (2010) New insights into diversity and evolution of deep-sea Mytilidae (Mollusca: Bivalvia). Mol Phylogenet Evol 57:71–83PubMedCrossRefGoogle Scholar
  115. Maddison WP, Maddison DR (2014) Mesquite: a modular system for evolutionary analysis. Version 3.01 http://mesquiteproject.org
  116. Magurran AE, Henderson PA (2003) Explaining the excess of rare species in natural species abundance distributions. Nature 422:714–716PubMedCrossRefGoogle Scholar
  117. Malekzadeh-Viayeh R, Pak-Tarmani R, Rostamkhani N, Fontaneto D (2014) Diversity of the rotifer Brachionus plicatilis species complex (Rotifera: Monogononta) in Iran through integrative taxonomy. Zool J Linn Soc 170:233–244CrossRefGoogle Scholar
  118. Marrone F, Brutto S, Lo AM (2010) Molecular evidence for the presence of cryptic evolutionary lineages in the freshwater copepod genus Hemidiaptomus G.O. Sars, 1903 (Calanoida, Diaptomidae). Hydrobiologia 644:115–125CrossRefGoogle Scholar
  119. Marrone F, Lo Brutto S, Hundsdoerfer AK, Arculeo M (2013) Overlooked cryptic endemism in copepods: systematics and natural history of the calanoid subgenus Occidodiaptomus Borutzky 1991 (Copepoda, Calanoida, Diaptomidae). Mol Phylogenet Evol 66:190–202PubMedCrossRefGoogle Scholar
  120. Martens K, Halse S, Schön I (2012) Nine new species of Bennelongia De Deckker & McKenzie, 1981 (Crustacea, Ostracoda) from Western Australia, with the description of a new subfamily. Eur J Taxon 8:1–56Google Scholar
  121. Martens K, Halse S, Schön I (2013) On the Bennelongia barangaroo lineage (Crustacea, Ostracoda) in Western Australia, with the description of seven new species. Eur J Taxon 66:1–59Google Scholar
  122. Mayr E (1982) The growth of biological thought diversity, evolution and inheritance. Belknap Press of Harvard University Press, Cambridge, pp 1–974Google Scholar
  123. McCormack JE, Hird SM, Zellmer AJ et al (2013) Applications of next-generation sequencing to phylogeography and phylogenetics. Mol Phylogenet Evol 66:526–538PubMedCrossRefGoogle Scholar
  124. Meyer CP, Paulay G (2005) DNA barcoding: error rates based on comprehensive sampling. PLoS Biol 3:e422PubMedCentralPubMedCrossRefGoogle Scholar
  125. Meyer M, Stenzel U, Hofreiter M (2008) Parallel tagged sequencing on the 454 platform. Nat Protoc 3:267–278PubMedCrossRefGoogle Scholar
  126. Meyer-Wachsmuth I, Curini-Galletti M, Jondelius U (2014) Hyper-cryptic marine meiofauna: species complexes in Nemertodermatida. PLoS One 9:e107688PubMedCentralPubMedCrossRefGoogle Scholar
  127. Miller JT, Spooner DM (1999) Collapse of species boundaries in the wild potato Solanum brevicaule complex (Solanaceae, S. sect. Petota): molecular data. Plant Syst Evol 214:103–130CrossRefGoogle Scholar
  128. Monaghan MT, Wild R, Elliot M et al (2009) Accelerated species inventory on Madagascar using coalescent-based models of species delineation. Syst Biol 58:298–311PubMedCrossRefGoogle Scholar
  129. Montero-Pau J, Gómez A, Muñoz J (2008) Application of an inexpensive and high-throughput genomic DNA extraction method for the molecular ecology of zooplanktonic diapausing eggs. Limnol Oceanogr Methods 6:218–222CrossRefGoogle Scholar
  130. Moore WS (1995) Inferring phylogenies from mtDNA variation: mitochondrial-gene trees versus nuclear-gene trees. Evolution 49:718–726CrossRefGoogle Scholar
  131. Morgan MJ, Bass D, Bik HM et al (2014) A critique of Rossberg et al.: noise obscures the genetic signal of meiobiotal ecospecies in ecogenomic datasets. Proc R Soc Lond B 281:20133076CrossRefGoogle Scholar
  132. O’Meara BC (2010) New heuristic methods for joint species delimitation and species tree inference. Syst Biol 59:59–73PubMedCrossRefGoogle Scholar
  133. Obertegger U, Fontaneto D, Flaim G (2012) Using DNA taxonomy to investigate the ecological determinants of plankton diversity: explaining the occurrence of Synchaeta spp. (Rotifera, Monogononta) in mountain lakes. Freshw Biol 57:1545–1553CrossRefGoogle Scholar
  134. Obertegger U, Flaim G, Fontaneto D (2014) Cryptic diversity within the rotifer Polyarthra dolichoptera along an altitudinal gradient. Freshw Biol 59:2413–2427CrossRefGoogle Scholar
  135. Padial JM, Miralles A, De la Riva I, Vences M (2010) The integrative future of taxonomy. Front Zool 7:16PubMedCentralPubMedCrossRefGoogle Scholar
  136. Palumbi S, Baker C (1994) Contrasting population structure from nuclear intron sequences and mtDNA of humpback whales. Mol Biol Evol 11:426–435PubMedGoogle Scholar
  137. Pante E, Puillandre N, Viricel A et al. (2015) Species are hypotheses: avoid connectivity assessments based on pillars of sand. Mol Ecol 24:525–544Google Scholar
  138. Papadopoulou A, Bergsten J, Fujisawa T et al (2008) Speciation and DNA barcodes: testing the effects of dispersal on the formation of discrete sequence clusters. Philos Trans R Soc Lond B Biol Sci 363:2987–2996PubMedCentralPubMedCrossRefGoogle Scholar
  139. Pons J, Barraclough TG, Gomez-Zurita J et al (2006) Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Syst Biol 55:595–609PubMedCrossRefGoogle Scholar
  140. Pont-Kingdon GA, Okada NA, Macfarlane JL et al (1995) A coral mitochondrial mutS gene. Nature 375:109–111PubMedCrossRefGoogle Scholar
  141. Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256PubMedCrossRefGoogle Scholar
  142. Posada D, Crandall KA (2001) Intraspecific gene genealogies: trees grafting into networks. Trends Ecol Evol 16:37–45PubMedCrossRefGoogle Scholar
  143. Powell JR (2012) Accounting for uncertainty in species delineation during the analysis of environmental DNA sequence data. Methods Ecol Evol 3:1–11CrossRefGoogle Scholar
  144. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedCentralPubMedGoogle Scholar
  145. Prosser SWJ, Martínez-Arce A, Elías-Gutiérrez M (2013) A new set of primers for COI amplification from freshwater microcrustaceans. Mol Ecol Resour 13:1151–1155PubMedGoogle Scholar
  146. Puillandre N, Lambert A, Brouillet S, Achaz G (2012a) ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Mol Ecol 21:1864–1877PubMedCrossRefGoogle Scholar
  147. Puillandre N, Modica MV, Zhang Y et al (2012b) Large-scale species delimitation method for hyperdiverse groups. Mol Ecol 21:2671–2691PubMedCrossRefGoogle Scholar
  148. Rameckers J, Hummel S, Herrmann B (1997) How many cycles does a PCR need? Determinations of cycle numbers depending on the number of targets and the reaction efficiency factor. Naturwissenschaften 84:259–262PubMedCrossRefGoogle Scholar
  149. Rannala B, Yang Z (2013) Improved reversible jump algorithms for Bayesian species delimitation. Genetics 194:245–253PubMedCentralPubMedCrossRefGoogle Scholar
  150. Rasmussen RS, Morrissey MT, Hebert PDN (2009) DNA barcoding of commercially important salmon and trout species (Oncorhynchus and Salmo) from North America. J Agric Food Chem 57:8379–8385PubMedCrossRefGoogle Scholar
  151. Ratnasingham S, Hebert PDN (2007) BOLD: The barcode of life data system (www.barcodinglife.org). Mol Ecol Notes 7:355–364PubMedCentralPubMedCrossRefGoogle Scholar
  152. Ratnasingham S, Hebert PDN (2013) A DNA-based registry for all animal species: the Barcode Index Number (BIN) system. PLoS One 8:e66213PubMedCentralPubMedCrossRefGoogle Scholar
  153. Rees HC, Maddison BC, Middleditch DJ, Patmore JRM, Gough KC (2014) The detection of aquatic animal species using environmental DNA – a review of eDNA as a survey tool in ecology. J Appl Ecol 51:1450–1459CrossRefGoogle Scholar
  154. Reid NM, Carstens BC (2012) Phylogenetic estimation error can decrease the accuracy of species delimitation: a Bayesian implementation of the general mixed Yule-coalescent model. BMC Evol Biol 12:196PubMedCentralPubMedCrossRefGoogle Scholar
  155. Richly E, Leister D (2004) NUMTs in sequenced eukaryotic genomes. Mol Biol Evol 21:1081–1084PubMedCrossRefGoogle Scholar
  156. Rodman JE, Cody JH (2003) The taxonomic impediment overcome: NSF’s Partnerships for Enhancing Expertise in Taxonomy (PEET) as a model. Syst Biol 52:428–435PubMedGoogle Scholar
  157. Ross HA (2014) The incidence of species-level paraphyly in animals: a re-assessment. Mol Phylogenet Evol 76:10–17PubMedCrossRefGoogle Scholar
  158. Rossberg AG, Rogers T, McKane AJ (2013) Are there species smaller than 1 mm? Proc R Soc Lond B 280:20131248CrossRefGoogle Scholar
  159. Rossberg AG, Rogers T, Mckane AJ (2014) Current noise-removal methods can create false signals in ecogenomic data. Proc R Soc Lond B 281:20140191CrossRefGoogle Scholar
  160. Roux KH (2009) Optimization and troubleshooting in PCR. Cold Spring Harb ProtocGoogle Scholar
  161. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386PubMedGoogle Scholar
  162. R Core Team (2014) R: A language and environment for statistical computing. R Core Team. R Foundation for Statistical Computing, ViennaGoogle Scholar
  163. Saiki RK, Gelfand DH, Stoffel S et al (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491PubMedCrossRefGoogle Scholar
  164. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci 74:5463–5467PubMedCentralPubMedCrossRefGoogle Scholar
  165. Schlick-Steiner BC, Steiner FM, Seifert B et al (2010) Integrative taxonomy: a multisource approach to exploring biodiversity. Annu Rev Entomol 55:421–438PubMedCrossRefGoogle Scholar
  166. Schmidt BR, Kéry M, Ursenbacher S et al (2013) Site occupancy models in the analysis of environmental DNA presence/absence surveys: a case study of an emerging amphibian pathogen. Methods Ecol Evol 4:646–653CrossRefGoogle Scholar
  167. Schmidt-Roach S, Miller KJ, Lundgren P, Andreakis N (2014) With eyes wide open: a revision of species within and closely related to the Pocillopora damicornis species complex (Scleractinia; Pocilloporidae) using morphology and genetics. Zool J Linn Soc 170:1–33CrossRefGoogle Scholar
  168. Schön I, Pinto RL, Halse S et al (2012) Cryptic species in putative ancient asexual Darwinulids (Crustacea, Ostracoda). PLoS One 7:e39844PubMedCentralPubMedCrossRefGoogle Scholar
  169. Shearer TL, Coffroth MA (2008) Barcoding corals: limited by interspecific divergence, not intraspecific variation. Mol Ecol Resour 8:247–255PubMedCrossRefGoogle Scholar
  170. Shearer TL, Van Oppen MJH, Romano SL, Wörheide G (2002) Slow mitochondrial DNA sequence evolution in the Anthozoa (Cnidaria). Mol Ecol 11:2475–2487PubMedCrossRefGoogle Scholar
  171. Shearn R, Koenders A, Halse S et al (2012) A review of Bennelongia De Deckker & Mckenzie, 1981 (Crustacea, Ostracoda) species from eastern Australia, with the description of three new species. Eur J Taxon 25:1–35Google Scholar
  172. Simpson GG (1951) The species concept. Evolution 5:285–298CrossRefGoogle Scholar
  173. Sites JW, Marshall JC (2003) Delimiting species: a Renaissance issue in systematic biology. Trends Ecol Evol 18:462–470CrossRefGoogle Scholar
  174. Sites JW, Marshall JC (2004) Operational criteria for delimiting species. Annu Rev Ecol Evol Syst 35:199–227CrossRefGoogle Scholar
  175. Sluys R, Solà E, Gritzalis K et al (2013) Integrative delineation of species of Mediterranean freshwater planarians (Platyhelminthes: Tricladida: Dugesiidae). Zool J Linn Soc 169:523–547CrossRefGoogle Scholar
  176. Sonet G, Jordaens K, Nagy ZT et al (2013) Adhoc: an R package to calculate ad hoc distance thresholds for DNA barcoding identification. Zookeys 365:329–335PubMedCrossRefGoogle Scholar
  177. Song H, Buhay JE, Whiting MF, Crandall KA (2008) Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. Proc Natl Acad Sci U S A 105:13486–13491PubMedCentralPubMedCrossRefGoogle Scholar
  178. Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68:978–989PubMedCentralPubMedCrossRefGoogle Scholar
  179. Stucky BJ (2012) SeqTrace: a graphical tool for rapidly processing DNA sequencing chromatograms. J Biomol Tech 23:90–93PubMedCentralPubMedCrossRefGoogle Scholar
  180. Taberlet P, Coissac E, Pompanon F, Brochmann C, Willerslev E (2012) Towards next-generation biodiversity assessment using DNA metabarcoding. Mol Ecol 21:2045–2050PubMedCrossRefGoogle Scholar
  181. Tajima F (1983) Evolutionary relationship of DNA sequences in finite populations. Genetics 105:437–460PubMedCentralPubMedGoogle Scholar
  182. Talavera G, Dinca V, Vila R (2013) Factors affecting species delimitations with the GMYC model: insights from a butterfly survey. Methods Ecol Evol 4:1101–1110CrossRefGoogle Scholar
  183. Tamura K, Stecher G, Peterson D et al (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729PubMedCentralPubMedCrossRefGoogle Scholar
  184. Tang CQ, Leasi F, Obertegger U et al (2012) The widely used small subunit 18S rDNA molecule greatly underestimates true diversity in biodiversity surveys of the meiofauna. Proc Natl Acad Sci U S A 109:16208–16212PubMedCentralPubMedCrossRefGoogle Scholar
  185. Tang CQ, Humphreys A, Fontaneto D, Barraclough TG (2014a) Effects of phylogenetic reconstruction method on the robustness of species delimitation using single locus data. Methods Ecol Evol 5:1086–1094PubMedCentralPubMedCrossRefGoogle Scholar
  186. Tang CQ, Obertegger U, Fontaneto D, Barraclough TG (2014b) Sexual species are separated by larger genetic gaps than asexual species in rotifers. Evolution 68:2901–2916PubMedCentralPubMedCrossRefGoogle Scholar
  187. Tautz D, Arctander P, Minelli A et al (2003) A plea for DNA taxonomy. Trends Ecol Evol 18:70–74CrossRefGoogle Scholar
  188. Tewhey R, Warner JB, Nakano M et al (2009) Microdroplet-based PCR enrichment for large-scale targeted sequencing. Nat Biotechnol 27:1025–1031PubMedCentralPubMedCrossRefGoogle Scholar
  189. Todd PA (2008) Morphological plasticity in scleractinian corals. Biol Rev 83:315–337PubMedCrossRefGoogle Scholar
  190. Truett GE, Heeger P, Mynatt RL et al (2000) Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and Tris (HotSHOT). Biotechniques 29:52–54PubMedGoogle Scholar
  191. Tulchinsky AY, Norenburg JL, Turbeville JM (2012) Phylogeography of the marine interstitial nemertean Ototyphlonemertes parmula (Nemertea, Hoplonemertea) reveals cryptic diversity and high dispersal potential. Mar Biol 159:661–674CrossRefGoogle Scholar
  192. Van Tassell CP, Smith TPL, Matukumalli LK et al (2008) SNP discovery and allele frequency estimation by deep sequencing of reduced representation libraries. Nat Methods 5:247–252PubMedCrossRefGoogle Scholar
  193. Velasco-Castrillón A, Page TJ, Gibson JAE, Stevens MI (2014) Surprisingly high levels of biodiversity and endemism amongst Antarctic rotifers uncovered with mitochondrial DNA. Biodiversity 15:130–142CrossRefGoogle Scholar
  194. Verovnik R, Sket B, Trontelj P (2005) The colonization of Europe by the freshwater crustacean Asellus aquaticus (Crustacea: Isopoda) proceeded from ancient refugia and was directed by habitat connectivity. Mol Ecol 14:4355–4369PubMedCrossRefGoogle Scholar
  195. Vogler AP, Monaghan MT (2007) Recent advances in DNA taxonomy. J Zool Syst Evol Res 45:1–10CrossRefGoogle Scholar
  196. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63PubMedCentralPubMedCrossRefGoogle Scholar
  197. Webb KE, Barnes DKA, Clark MS, Bowden DA (2006) DNA barcoding: a molecular tool to identify Antarctic marine larvae. Deep Sea Res II Top Stud Oceanogr 53:1053–1060CrossRefGoogle Scholar
  198. Wiemers M, Fiedler K (2007) Does the DNA barcoding gap exist?—a case study in blue butterflies (Lepidoptera: Lycaenidae). Front Zool 4:8PubMedCentralPubMedCrossRefGoogle Scholar
  199. Wiens JJ (2007) Species delimitation: new approaches for discovering diversity. Syst Biol 56:875–878PubMedCrossRefGoogle Scholar
  200. Wiens JJ, Servedio MR (2000) Species delimitation in systematics: inferring diagnostic differences between species. Proc Biol Sci 267:631–636PubMedCentralPubMedCrossRefGoogle Scholar
  201. Williams S, Apte D, Ozawa T, Kaligis F, Nakano T (2011) Speciation and dispersal along continental coastlines and island arcs in the Indo‐West Pacific turbinid gastropod genus Lunella. Evolution 65:1752–1771PubMedCrossRefGoogle Scholar
  202. Winship PR (1989) An improved method for directly sequencing PCR amplified material using dimethyl sulphoxide. Nucleic Acids Res 17:1266PubMedCentralPubMedCrossRefGoogle Scholar
  203. Yang Z, Rannala B (2010) Bayesian species delimitation using multilocus sequence data. Proc Natl Acad Sci U S A 107:9264–9269PubMedCentralPubMedCrossRefGoogle Scholar
  204. Yang Z, Rannala B (2014) Unguided species delimitation using DNA sequence data from multiple loci. Mol Biol Evol 31:3125–3135PubMedCentralPubMedCrossRefGoogle Scholar
  205. Zeppilli D, Sarrazin J, Leduc D et al. (2015) Meiofauna as model organisms to assess global change in marine ecosystems. Mar BiodiversGoogle Scholar
  206. Zhan A, MacIsaac HJ (2015) Rare biosphere exploration using high-throughput sequencing: research progress and perspectives. Conserv GenetGoogle Scholar
  207. Zhang J, Kapli P, Pavlidis P, Stamatakis A (2013) A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29:2869–2876PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Diego Fontaneto
    • 1
  • Jean-François Flot
    • 2
  • Cuong Q. Tang
    • 3
    • 4
  1. 1.National Research CouncilInstitute of Ecosystem StudyVerbania PallanzaItaly
  2. 2.Department of Genetics, Evolution and EnvironmentUniversity College LondonLondonUK
  3. 3.Department of Life SciencesImperial College LondonBerkshireUK
  4. 4.Department of Life SciencesThe Natural History MuseumLondonUK

Personalised recommendations