Marine Biodiversity

, Volume 45, Issue 4, pp 743–762 | Cite as

Long-term iceshelf-covered meiobenthic communities of the Antarctic continental shelf resemble those of the deep sea

  • Armin Rose
  • Jeroen IngelsEmail author
  • Maarten Raes
  • Ann Vanreusel
  • Pedro Martínez Arbizu
Original Paper


Since strong regional warming has led to the disintegration of huge parts of the Larsen A and B ice shelves east of the Antarctic Peninsula in 1995 and 2002, meiofaunal communities covered by ice shelves for thousands of years could be investigated for the first time. Based on a dataset of more than 230,000 individuals, meiobenthic higher taxa diversity and composition of Larsen continental shelf stations were compared to those of deep-sea stations in the Western Weddell Sea to see whether the food-limiting conditions in the deep sea and the food-poor shelf regime at times of iceshelf coverage has resulted in similar meiobenthic communities, on the premises that food availability is the main driver of meiobenthic assemblages. We show here that this is indeed the case; in terms of meiobenthic communities, there is greater similarity between the deep sea and the inner Larsen embayments than there is similarity between the deep sea and the former Larsen B iceshelf edge and the open continental shelf. We also show that resemblance to Antarctic deep-sea meiofaunal communities was indeed significantly higher for communities of the innermost Larsen B area than for those from intermediate parts of Larsen A and B. Similarity between communities from intermediate parts and the deep sea was again higher than between those of the ice-edge and the open shelf. Meiofaunal densities were low at the inner parts of Larsen A and B, and comparable to deep-sea densities, again likely owing to the low food supply at both habitats. We suggest that meiobenthic communities have not yet recovered from the food-limiting conditions present at the time of iceshelf coverage. Meiofaunal diversity on the other hand seemed driven by sediment structure, being higher in coarser sediments.


Climate change Iceshelf break-up Metazoan meiofauna Antarctic Peninsula Larsen A Larsen B ANDEEP 2 Deep sea 



The authors wish to thank Annika Janssen, Erik Gutzmann, Marco Bruhn, Jutta Heitfeld, and Annika Hellmann for sorting meiofaunal organisms, as well as Dirk Van Gansbeke and Bart Beuselinck for laboratory analyses on sediment properties and phytopigments. The officers and crew of RV Polarstern, cruise legs ANT-XXIII/8 and ANT-XXVII/3, are greatly acknowledged for their valuable support on board. Special thanks go to Dr Gritta Veit-Köhler for her constructive remarks. This study was financially supported by the DFG (Deutsche Forschungsgemeinschaft, Priority Programme “Antarctic Research”, SSP 1158: project RO 3004/2), which is gratefully acknowledged by the first author. Contributions of Jeroen Ingels, Maarten Raes and Ann Vanreusel were conducted within the framework of the BIANZO II project, financed by the Belgian Science Policy (Scientific Research Program on Antarctica). J.I. is currently supported by a Marie Curie Intra-European Fellowship within the 7th European Community Framework Programme (Grant Agreement FP7-PEOPLE-2011-IEF No 300879).

Supplementary material

12526_2014_284_MOESM1_ESM.docx (47 kb)
Table S1 Individuals densities [(core average per taxon and total) N per 10 cm2], total number of meiofaunal higher taxa, and number of cores for eleven investigated stations from three West Antarctic regions; also shown are frequencies of taxa over stations (Freq), mean and median densities over stations, median-to-mean ratio (Med/Mean), as well as total numbers of individuals, taxa and investigated cores. (DOCX 46 kb)
12526_2014_284_MOESM2_ESM.docx (40 kb)
Table S2 Selected community parameters for eleven stations (medians of number of meiofaunal higher taxa and individuals per core; medians of Shannon’s, Simpson’s, and rarefaction diversity ET(500) per core; rarefaction diversity ET(500) on site scale) and environmental factors if available [medians of depth and volumetric (V) mean in the first cm of sediment; *) CPE inventories in the first eleven cm of sediment after Sañe Schepísi et al. 2011]. (DOCX 39 kb)
12526_2014_284_MOESM3_ESM.docx (39 kb)
Table S3 Significance of regression coefficients for linear regressions (pos: positive slope; neg: negative slope) of selected community parameters on selected environmental factors (see Table S2 and text for details). (DOCX 38 kb)
12526_2014_284_MOESM4_ESM.docx (41 kb)
Table S4 Left part: endpoints of environmentals vectors along the first three CCA axes [upper part: all stations (see Fig. 7a, b and text); lower part: Larsen B and Elephant Island stations (see Fig. 7a); rel expl: vector length/explanatory power on the first three axes for a certain factor relative to the shortest vector (last one in the list: set to 1); bold numbers indicate the axis to which a certain factor shows the highest correlation]. Right part: overall eigenvalues and explanatory powers of the first three, and of all axes according to the total inertia/variation in both datasets. (DOCX 41 kb)
12526_2014_284_MOESM5_ESM.docx (116 kb)
Table S5 Overview of the main characteristics of selected community parameters and environmental factors (see Table S2 and text for details) for the two ecologically most distinct Larsen B shelf stations and the four ANDEEP-2 deep-sea stations; ‘high’, ‘medium’ and ‘low’ are rough estimates relative to all investigated stations. (DOCX 115 kb)


  1. Azam F, Beers JR, Campbell L, Carlucci AF, Holm-Hansen O, Reid FMH (1979) Occurence and metabolic activity of organisms under the Ross Ice Shelf, Antarctica, at station J9. Science 203:451–453PubMedCrossRefGoogle Scholar
  2. Baguley JG, Montagna PA, Hyde LJ, Kalke RD, Rowe GT (2006) Metazoan meiofauna abundance in relation to environmental variables in the northern Gulf of Mexico deep sea. Deep-Sea Res Part I 53:1344–1362CrossRefGoogle Scholar
  3. Barnes DKA, Peck LS (2008) Vulnerability of Antarctic shelf biodiversity to predicted regional warming. Clim Res 37:149–163CrossRefGoogle Scholar
  4. Barnett PRO, Watson J, Connelly D (1984) A multiple corer for taking virtually undisturbed samples from shelf, bathyal and abyssal sediments. Oceanol Acta 7:399–408Google Scholar
  5. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300Google Scholar
  6. Boeckner MJ, Sharma J, Proctor HC (2009) Revisiting the meiofaunal paradox: dispersal and colonization of nematodes and other meiofaunal organisms in low- and high-energy environments. Hydrobiologia 624:91–106CrossRefGoogle Scholar
  7. Brandt A (1992) Origin of Antarctic Isopoda (Crustacea, Malacostraca). Mar Biol 113:415–423CrossRefGoogle Scholar
  8. Brandt A, De Broyer C, De Mesel I, Ellingsen KE, Gooday AJ, Hilbig B, Linse K, Thomson MRA, Tyler PA (2007) The biodiversity of the deep Southern Ocean benthos. Philos Trans R Soc Lond B 362:39–66CrossRefGoogle Scholar
  9. Braun M, Humbert A, Moll A (2009) Changes of wilkins ice shelf over the past 15 years and inferences on its stability. Cryosphere Dis 3:41–56CrossRefGoogle Scholar
  10. Bray JR, Curtis JT (1957) An ordination on the upland forest communities of Southern Wisconsin. Ecol Monogr 27:325–349CrossRefGoogle Scholar
  11. Brey T, Dahm C, Gorny M, Klages M, Stiller M, Arntz WE (1996) Do Antarctic benthic invertebrates show an extended level of eurybathy? Antarct Sci 8:3–6Google Scholar
  12. Bruchhausen PM, Raymond JA, Jacobs SS, DeVries AL, Thorndike EM (1979) Fish, crustaceans, and the sea floor under the Ross Ice Shelf. Science 203:449–451PubMedCrossRefGoogle Scholar
  13. Chapman WL, Walsh JE (2007) A synthesis of Antarctic temperatures. J Clim 20:4096–4117CrossRefGoogle Scholar
  14. Clarke A (2003) The polar deep seas. In: Tyler PA (ed) Ecosystems of the deep oceans. Elsevier, Amsterdam, pp 239–260Google Scholar
  15. Clarke KR, Green RH (1988) Statistical design and analysis for a ‘biological effects’ study. Mar Ecol Prog Ser 46:213–226CrossRefGoogle Scholar
  16. Clarke KR, Warwick RM (2001) Change in marine communities: an approach to statistical analysis and interpretation. PRIMER-E Ltd, PlymouthGoogle Scholar
  17. Clarke A, Murphy EJ, Meredith MP, King JC, Peck LS, Barnes DKA, Smith RC (2007) Climate change and the marine ecosystem of the western Antarctic Peninsula. Philos Trans R Soc Lond B 362:149–166CrossRefGoogle Scholar
  18. Cook AJ, Fox AJ, Vaughan DG, Ferrigno JG (2005) Retreating glacial fronts on the Antarctic Peninsula over the past half-century. Science 308:541–544PubMedCrossRefGoogle Scholar
  19. Cornelius N, Gooday AJ (2004) ‘Live’ (stained) deep-sea benthic foraminiferans in the western Weddell Sea: trends in abundance, diversity and taxonomic composition along a depth transect. Deep-Sea Res Part II 51:1571–1602CrossRefGoogle Scholar
  20. Coull BC (1985) Long-term variability of estuarine meiobenthos: an 11 year study. Mar Ecol Prog Ser 24:205–218CrossRefGoogle Scholar
  21. Danovaro R, Company JB, Corinaldesi C, D’Onghia G, Galil B, Gambi C, Gooday AJ, Lampadariou N, Luna GM, Morigi C, Olu K, Polymenakou P, Ramirez-Llodra E, Sabbatini A, Sardŕ F, Sibuet M, Tselepides A (2010) Deep-sea biodiversity in the Mediterranean Sea: the known, the unknown, and the unknowable. PLoS ONEe 5:e11832. doi: 10.1371/journal.pone.0011832
  22. De Mesel I, Lee HJ, Vanhove S, Vincx M, Vanreusel A (2006) Species diversity and distribution within the deep-sea nematode genus Acantholaimus on the continental shelf and slope in Antarctica. Polar Biol 29:860–871CrossRefGoogle Scholar
  23. Decho AW, Fleeger JW (1988) Ontogenetic feeding shifts in the meiobenthic harpacticoid copepod Nitocra lacustris. Mar Biol 97:191–197CrossRefGoogle Scholar
  24. Domack E, Duran D, Leventer A, Ishman S, Doane S, McCallum S, Amblas D, Ring J, Gilbert R, Prentice M (2005a) Stability of the Larsen B ice shelf on the Antarctic Peninsula during the Holocene epoch. Nature 436:681–685PubMedCrossRefGoogle Scholar
  25. Domack E, Ishman S, Leventer A, Sylva S, Willmott V, Huber B (2005b) A chemotrophic ecosystem found beneath Antarctic ice shelf. EOS 86:271–272CrossRefGoogle Scholar
  26. Domack EW, Leventer A, Willmott V, Brachfeld S, Ishman S, Huber B, Rebesco M, Zgur F, Padman L, Gilbert R (2007) New marine sediment core data support Holocene stability of the Larsen B Ice Shelf. Cooper AK et al. (eds) Online Proceedings of the 10th ISAES X, USGS Open-File Report 2007-1047, Extended Abstract 019. Accessed 12 Sep 2011.
  27. Engelmann H-D (1978) Zur Dominanzklassifizierung von Bodenarthropoden. Pedobiologia 18:378–380Google Scholar
  28. Fabiano M, Danovaro R (1999) Meiofauna distribution and mesoscale variability in two sites of the Ross Sea (Antarctica) with contrasting food supply. Polar Biol 22:115–123CrossRefGoogle Scholar
  29. Faubel A, Noreña C (2006) On the distribution of meiobenthos along a transect through the Angola Basin. Preliminary report. Accessed 4 Nov 2014.
  30. Fonseca G, Soltwedel T (2007) Deep-sea meiobenthic communities underneath the marginal ice zone off Eastern Greenland. Polar Biol 30:607–618CrossRefGoogle Scholar
  31. Gage J (2004) Diversity in deep-sea benthic macrofauna: the importance of local ecology, the larger scale, history and the Antarctic. Deep-Sea Res Part II 51:1689–1708CrossRefGoogle Scholar
  32. George KH, Rose A (2004) First record of a monospecific harpacticoid fauna on a sandy beach. Meiofauna Mar 13:87–94Google Scholar
  33. Gheerardyn H, Veit-Köhler G (2009) Diversity and large-scale biogeography of Paramesochridae (Copepoda, Harpacticoida) in South Atlantic Abyssal Plains and the deep Southern Ocean. Deep-Sea Res Part I 56:1804–1815CrossRefGoogle Scholar
  34. Giere O (2009) Meiobenthology, 2nd edn. Springer, Berlin, HeidelbergGoogle Scholar
  35. Glover AG, Smith CR, Mincks SL, Sumida PYG, Thurber AR (2008) Macrofaunal abundance and composition on the West Antarctic Peninsula continental shelf: Evidence for a sediment ‘food bank’ and similarities to deep-sea habitats. Deep-Sea Res Part II 55:2491–2501CrossRefGoogle Scholar
  36. Gooday AJ, Bowser SS, Bernhard JM (1996) Benthic foraminiferal assemblages in Explorers Cove, Antarctica: a shallow-water site with deep-sea characteristics. Progr Oceanogr 37:117–166CrossRefGoogle Scholar
  37. Grant J, Hargrave B, MacPherson P (2002) Sediment properties and benthic–pelagic coupling in the North Water. Deep-Sea Res Part II 49:5259–5275CrossRefGoogle Scholar
  38. Guilini K, Soltwedel T, van Oevelen D, Vanreusel A (2011) Deep-sea nematodes actively colonise sediments, irrespective of the presence of a pulse of organic matter: Results from an in-situ experiment. Plos ONE 6:e18912. doi: 10.1371/journal.pone.0018912 PubMedCentralPubMedCrossRefGoogle Scholar
  39. Gutt J (2006) Coexistence of macro-zoobenthic species on the Antarctic shelf: an attempt to link ecological theory and results. Deep-Sea Res Part II 53:1009–1028CrossRefGoogle Scholar
  40. Gutt J (ed) (2008) The expedition ANTARKTIS-XXIII/8 of the research vessel "Polarstern" in 2006/2007. Ber Polarforsch Meeresforsch 569: 1-152Google Scholar
  41. Gutt J, Starmans A (1998) Structure and biodiversity of megabenthos in the Weddell and Lazarev Seas (Antarctica): ecological role of physical parameters and biological interactions. Polar Biol 20:229–247CrossRefGoogle Scholar
  42. Gutt J, Barratt I, Domack E, D’Udekem d’Acoz C, Dimmler W, Grémare A, Heilmayer O, Isla E, Janussen D, Jorgensen E, Kock KH, Lehnert LS, López-Gonzáles P, Langner S, Linse K, Manjón-Cabeza EM, Meißner M, Montiel A, Raes M, Robert H, Rose A, Sañé Schepisi E, Saucède T, Scheidat M, Schenke HW, Seiler J, Smith C (2011) Biodiversity change after climate-induced ice-shelf collapse in the Antarctic. Deep-Sea Res Part II 58:74–83CrossRefGoogle Scholar
  43. Gutt J, Cape M, Dimmler W, Fillinger L, Isla E, Lieb V, Lundälv T, Pulcher C (2013) Shifts in Antarctic megabenthic structure after ice-shelf disintegration in the Larsen area east of the Antarctic Peninsula. Polar Biol 36:895–906CrossRefGoogle Scholar
  44. Gutzmann E, Martínez Arbizu P, Rose A, Veit-Köhler G (2004) Meiofauna communities along an abyssal depth gradient in the drake passage. Deep-Sea Res Part II 51:1617–1628CrossRefGoogle Scholar
  45. Hardy C, David B, Rigaud T, De Ridder C, Saucéde T (2011) Ectosymbiosis associated with cidaroids (Echinodermata: Echinoidea) promotes benthic colonization of the seafloor in the Larsen Embayments, Western Antarctica. Deep-Sea Res Part II 58:84–90CrossRefGoogle Scholar
  46. Hauquier F, Ingels J, Gutt J, Raes M, Vanreusel A (2011) Characterisation of the nematode community of a low-activity cold seep in the recently ice-shelf free Larsen B area, Eastern Antarctic Peninsula. PLoS One 6:e22240. doi: 10.1371/journal.pone.0022240 PubMedCentralPubMedCrossRefGoogle Scholar
  47. Held C (2000) Phylogeny and biogeography of serolid isopods (Crustacea, Isopoda, Serolidae) and the use of ribosomal expansion segments in molecular systematics. Mol Phyl Evol 15:165–178CrossRefGoogle Scholar
  48. Herman RL, Dahms HU (1992) Meiofauna communities along a depth transect of Halley Bay (Weddell Sea—Antarctica). Polar Biol 12:313–320CrossRefGoogle Scholar
  49. Higgins RP, Thiel H (1988) Introduction to the study of Meiofauna. Smithsonian Institution, LondonGoogle Scholar
  50. Holm-Hansen O, Carlucci AF, Azam F (1979) Biological studies of the water column and sediments under the ross ice shelf. Antarct J US 14:160–161Google Scholar
  51. Hoste E, Vanhove S, Schewe I, Soltwedel T, Vanreusel A (2007) Spatial and temporal variations in deep-sea meiofauna assemblages in the Marginal Ice Zone of the Arctic Ocean. Deep-Sea Res Part II 54:109–129CrossRefGoogle Scholar
  52. Howe JA, Shimmield TM, Diaz R (2004) Deep-water sedimentary environments of the northwestern Weddell Sea and South Sandwich Islands, Antarctica. Deep-Sea Res Part II 51:1489–1515CrossRefGoogle Scholar
  53. Hunter RL, Halanych KM (2008) Evaluating connectivity in the brooding brittle star Astrotoma agassizii across the drake passage in the Southern Ocean. J Hered 99:137–148PubMedCrossRefGoogle Scholar
  54. Hurlbert SH (1971) The nonconcept of species diversity: a critique and alternative parameters. Ecology 52:577–586CrossRefGoogle Scholar
  55. Huston M (1979) A general hypothesis of species diversity. Am Nat 113:81–101CrossRefGoogle Scholar
  56. Huston MA, DeAngelis DL (1994) Competition and coexistence—the effects of resource transport and supply. Am Nat 144:954–977CrossRefGoogle Scholar
  57. Ingels J, Vanhove S, De Mesel I, Vanreusel A (2006) The biodiversity and biogeography of the free-living nematode genera Desmodora and Desmodorella (family Desmodoridae) at both sides of the Scotia Arc. Polar Biol 29:926–939CrossRefGoogle Scholar
  58. Ingels J, Van den Driessche P, De Mesel I, Vanhove S, Moens T, Vanreusel A (2010) Preferred use of bacteria over phytoplankton by deep-sea nematodes in polar regions. Mar Ecol Prog Ser 406:121–133CrossRefGoogle Scholar
  59. Ingels J, Dashfield SL, Somerfield PJ, Widdicombe S, Austen MC (2014a) Interactions between multiple large macrofauna species and nematode communities—mechanisms for indirect impacts of trawling disturbance. J Exp Mar Biol Ecol 456:41–49CrossRefGoogle Scholar
  60. Ingels J, Hauquier F, Raes M, Vanreusel A, De Broyer C, Koubbi P, Griffiths HJ, Raymond B, Udekem d’Acoz CD (2014b) Chapter 5.3. Antarctic free-living marine nematodes. In: Van de Putte A, Danis B, David B, Grant S, Gutt J, Held C, Hosie G, Huettmann F, Post A, Ropert-Coudert Y (eds) Biogeographic Atlas of the Southern Ocean. Scientific Committee on Antarctic Research, Cambridge, pp 83–87Google Scholar
  61. Jongman RHG, Ter Braak CJF, van Tongeren OFR (1995) Data analysis in community and landscape ecology. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  62. Joughin I, Smith BE, Medley B (2014) Marine ice sheet collapse potentially under way for the Thwaites Glacier Basin, West Antarctica. Science 344:735–738PubMedCrossRefGoogle Scholar
  63. Kaiser S, Griffiths HJ, Barnes DKA, Brandao SN, Brandt A, O’Brien PE (2011) Is there a distinct continental slope fauna in the Antarctic? Deep-Sea Res Part II 58:91–104CrossRefGoogle Scholar
  64. Kaiser S, Brandão SN, Brix S, Barnes DKA, Bowden DA, Ingels J, Leese F, Schiaparelli S, Arango CP, Badhe R, Bax N, Blazewicz-Paszkowycz M, Brandt A, Brenke N, Catarino AI, David B, De Ridder C, Dubois P, Ellingsen KI, Glover AG, Griffiths HJ, Gutt J, Halanych KM, Havermans C, Held C, Janussen D, Lörz AN, Pearce DA, Pierrat B, Riehl T, Rose A, Sands CJ, Soler-Membrives A, Schüller M, Strugnell JM, Vanreusel A, Veit-Köhler G, Wilson NG, Yasuhara M (2013) Patterns, processes and vulnerability of Southern Ocean benthos: a decadal leap in knowledge and understanding. Mar Biol 160:2295–2317CrossRefGoogle Scholar
  65. Leduc D, Rowden AA, Bowden DA, Probert PK, Pilditch CA, Nodder SD (2012) Unimodal relationship between biomass and species richness of deep-sea nematodes: implications for the link between productivity and diversity. Mar Ecol Prog Ser 454:53–64CrossRefGoogle Scholar
  66. Lee HJ, Gerdes D, Vanhove S, Vincx M (2001a) Meiofauna response to iceberg disturbance on the Antarctic continental shelf at Kapp Norvegia (Weddell Sea). Polar Biol 24:926–933CrossRefGoogle Scholar
  67. Lee HJ, Vanhove S, Peck LS, Vincx M (2001b) Recolonisation of meiofauna after catastrophic iceberg scouring in shallow Antarctic sediments. Polar Biol 24:918–925CrossRefGoogle Scholar
  68. Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280CrossRefGoogle Scholar
  69. Lins L, Vanreusel A, van Campenhout J, Ingels J (2013) Selective settlement of deep-sea canyon nematodes after resuspension—an experimental approach. J Exp Mar Biol Ecol 441:110–116CrossRefGoogle Scholar
  70. Lipps JH, Ronan TE Jr, DeLaca TE (1979) Life below the Ross Ice Shelf, Antarctica. Science 203:447–449PubMedCrossRefGoogle Scholar
  71. Mann H, Whitney D (1947) On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat 18:50–60CrossRefGoogle Scholar
  72. McClintic MA, DeMaster DJ, Thomas CJ, Smith CR (2008) Testing the FOODBANCS hypothesis: Seasonal variations in near-bottom particle flux, bioturbation intensity, and deposit feeding based on 234Th measurements. Deep-Sea Res Part II 55:2425–2437CrossRefGoogle Scholar
  73. McIntyre AD, Warwick RM (1984) Meiofauna techniques (Ch. 7). In: Holme NA, McIntyre AD (eds) Methods for the study of marine benthos. Blackwell, Oxford, pp 217–244Google Scholar
  74. Meredith MP, King JC (2005) Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophys Res Lett 32:L19604. doi: 10.1029/2005GL024042 CrossRefGoogle Scholar
  75. Mincks SL, Smith CR, Jeffreys RM, Sumida PYG (2008) Trophic structure on the West Antarctic Peninsula shelf: detritivory and benthic inertia revealed by d13C and d15N analysis. Deep-Sea Res Part II 55:2502–2514CrossRefGoogle Scholar
  76. Moens T, Braeckman U, Derycke S, Fonseca G, Gallucci F, Gingold R, Guillini K, Ingels J, Leduc D, Vanaverbeke J, Van Colen C, Vanreusel A, Vincx M (2013) Ecology of free-living marine nematodes. In: Schmidt-Rhaesa A (ed) Handbook of Zoology. De Gruyter, Berlin, pp 109–152Google Scholar
  77. Mühlenhardt-Siegel U (2011) Cumacean (Peracarida, Crustacea) endemism and faunal overlap in Antarctic deep-sea basins. Deep-Sea Res Part II 58:68–73CrossRefGoogle Scholar
  78. Niemann H, Fischer D, Graffe D, Knittel K, Montiel A, Heilmayer O, Nöthen K, Pape T, Kasten S, Bohrmann G, Boetius A, Gutt J (2009) Biogeochemistry of a low-activity cold seep in the Larsen B area, western Weddell Sea, Antarctica. Biogeosciences 6:2383–2395CrossRefGoogle Scholar
  79. Oksanen J, Guillaume Blanchet F, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Henry M, Stevens H, Wagner H (2013) Package ‘vegan’: Community Ecology Package. R package version 2.0-7
  80. Pfannkuche O (1985) The deep-sea meiofauna of the Porcupine Seabight and abyssal plain (NE Atlantic): population structure, distribution, standing stocks. Oceanol Acta 8:343–353Google Scholar
  81. Pfannkuche O, Thiel H (1987) Meiobenthic stocks and benthic activity on the NE-Svalbard shelf and in the Nansen-Basin. Polar Biol 7:253–266CrossRefGoogle Scholar
  82. Pfeifer D, Bäumer HP, Dekker R, Schleier U (1998) Statistical tools for monitoring benthic communities. Senckenb Marit 29:63–76CrossRefGoogle Scholar
  83. Post AL, Hemer MA, O’Brien PE, Roberts D, Craven M (2007) History of benthic colonization beneath the Amery ice shelf, East Antarctica. Mar Ecol Prog Ser 344:29–37CrossRefGoogle Scholar
  84. Post AL, Beaman RJ, O’Brien PE, Eléaume M, Riddle MJ (2011) Community structure and benthic habitats across the George V Shelf, East Antarctica: trends through space and time. Deep-Sea Res Part II 58:105–118CrossRefGoogle Scholar
  85. Pudsey CJ, Murray JW, Appleby P, Evans J (2006) Ice shelf history from petrographic and foraminiferal evidence, northeast Antarctic Peninsula. Quat Sci Rev 25:2357–2379CrossRefGoogle Scholar
  86. Purinton BL, DeMaster DJ, Thomas CJ, Smith CR (2008) 14C as a tracer of labile organic matter in Antarctic benthic food webs. Deep-Sea Res Part I 55:2438–2450CrossRefGoogle Scholar
  87. Raes M, Rose A, Vanreusel A (2010) Response of nematode communities after large-scale iceshelf collapse events in the Antarctic Larsen area. Glob Change Biol 16:1618–1631CrossRefGoogle Scholar
  88. R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  89. Riddle MJ, Craven M, Goldsworthy PM, Carsey F (2007) A diverse benthic assemblage 100 km from open water under the Amery Ice Shelf, Antarctica. Paleoceanography 22:PA1204. doi: 10.1029/2006PA001327 CrossRefGoogle Scholar
  90. Rignot E, Mouginot J, Morlighem M, Seroussi H, Scheuchl B (2014) Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith and Kohler glaciers, West Antarctica from 1992 to 2011. Geophys Res Lett 2014:GL060140Google Scholar
  91. Rose A, Seifried S (2006) Small-scale diversity of Harpacticoida (Crustacea, Copepoda) from an intertidal sandflat in the Jade Bay (German Bight, North Sea). Senckenb Marit 36:109–122CrossRefGoogle Scholar
  92. Rose A, Seifried S, Willen E, George KH, Veit-Köhler G, Bröhldick K, Drewes J, Moura G, Martínez Arbizu P, Schminke HK (2005) A method for comparing within-core alpha diversity values from repeated multicorer samplings, shown for abyssal Harpacticoida (Crustacea: Copepoda) from the Angola Basin. Org Div Evol 5:3–17CrossRefGoogle Scholar
  93. Rosenzweig ML (1995) Species diversity in space and time. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  94. Rosenzweig ML, Abramsky Z (1993) How are diversity and productivity related? Rickleffs R, Schluter D (eds) Species diversity in ecological communities: historical and geographical perspectives. University of Chicago Press, Chicago, pp 52–65Google Scholar
  95. Sañe Schepísi E, Isla E, Grémare A, Gutt J, Vétion G, DeMaster DJ (2011) Pigments in sediments beneath recently collapsed ice shelves: the case of Larsen A and B shelves, Antarctic Peninsula. J Sea Res 65:94–102CrossRefGoogle Scholar
  96. Scambos T, Hulbe C, Fahnestock M (2003) Climate-induced ice shelf disintegration in the Antarctic Peninsula. Paleobiol Paleoenviron Eocene Rocks Antarct Res Ser 76:335–347Google Scholar
  97. Sebastian S, Raes M, De Mesel I, Vanreusel A (2007) Comparison of the nematode fauna from the Weddell Sea Abyssal Plain with two North Atlantic abyssal sites. Deep-Sea Res Part II 54:1727–1736CrossRefGoogle Scholar
  98. Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, UrbanaGoogle Scholar
  99. Shuman FR, Lorenzen CF (1975) Quantitative degradation of chlorophyll by a marine herbivore. Limnol Oceanogr 20:580–586CrossRefGoogle Scholar
  100. Simpson EH (1949) Measurement of diversity. Nature 163:688CrossRefGoogle Scholar
  101. Skowronski RS, De Corbisier TN (2002) Meiofauna distribution in Martel Inlet, King George Island (Antarctica): sediment features versus food availability. Polar Biol 25:126–134CrossRefGoogle Scholar
  102. Smale DA, Barnes DKA (2008) Likely responses of the Antarctic benthos to climate-related changes in physical disturbance during the 21st century, based primarily on evidence from the West Antarctic Peninsula region. Ecography 31:289–305CrossRefGoogle Scholar
  103. Smith KL (2011) Free-drifting icebergs in the Southern Ocean: an overview. Deep-Sea Res Part II 58:1277–1284CrossRefGoogle Scholar
  104. Smith KL, Robison BH, Helly JJ, Kaufmann RS, Ruhl HA, Shaw TJ, Twining BS, Vernet M (2007) Free-drifting icebergs: hot spots of chemical and biological enrichment in the Weddell Sea. Science 317:478–482PubMedCrossRefGoogle Scholar
  105. Smith CR, Mincks S, DeMaster DJ (2008) The FOODBANCS project: introduction and sinking fluxes of organic carbon, chlorophyll-a and phytodetritus on the western Antarctic Peninsula continental shelf. Deep-Sea Res Part II 55:2404–2414CrossRefGoogle Scholar
  106. Smith KL, Sherman AD, Shaw TJ, Murray AE, Vernet M, Cefarelli AO (2011) Carbon export associated with free-drifting icebergs in the Southern Ocean. Deep-Sea Res Part II 58:1485–1496CrossRefGoogle Scholar
  107. Solomon S, Qin D, Manning M, Marquis M, Averyt K, Tignor MMB, Miller HL Jr, Chen Z (2007) Climate change 2007: the physical science basis. contribution of working group i to the fourth assessment report of the inter-governmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  108. Somerfield PJ (2008) Identification of the Bray-Curtis similarity index: comment on Yoshioka (2008). Mar Ecol Prog Ser 372:303–306CrossRefGoogle Scholar
  109. Strugnell JM, Cherel Y, Cooke IR, Gleadall IG, Hochberg FG, Ibanez CM, Jorgensen E, Laptikhovsky VV, Linse K, Norman M, Vecchione M, Voight JR, Allcock AL (2011) The Southern Ocean: source and sink? Deep-Sea Res Part II 58:196–204CrossRefGoogle Scholar
  110. Ter Braak CJF (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67:1167–1179CrossRefGoogle Scholar
  111. Thatje S, Anger K, Calcagno JA, Lovrich GA, Pörtner HO, Arntz WE (2005) Challenging the cold: crabs reconquer the Antarctic. Ecology 86:619–625CrossRefGoogle Scholar
  112. Thistle D (2003) The deep-sea floor: an overview. In: Tyler PA (ed) Ecosystems of the world 28: ecosystems of the deep oceans. Elsevier, Amsterdam, pp 5–37Google Scholar
  113. Thistle D, Eckman JE (1988) Response of harpacticoid copepods to habitat structure at a deep-sea site. Hydrobiologia 167(168):143–149CrossRefGoogle Scholar
  114. Thistle D, Eckman JE, Paterson GLJ (2008) Large, motile epifauna interact strongly with harpacticoid copepods and polychaetes at a bathyal site. Deep-Sea Res Part I 55:324–331CrossRefGoogle Scholar
  115. Tietjen JH (1992) Abundance and biomasse of metazoan meiobenthos in the deep sea. Rowe GT, Pariente V (eds) Deep-sea food chains and the global carbon cycle. Kluwer, Leiden, pp 45-62Google Scholar
  116. Vanhove S, Wittoeck J, Desmet G, van den Berghe B, Herman RL, Bak RPM, Nieuwland G, Vosjan JH, Boldrin A, Rabitti S, Vincx M (1995) Deep-sea meiofauna communities in Antarctica: structural analysis and relation with the environment. Mar Ecol Prog Ser 127:65–76CrossRefGoogle Scholar
  117. Vanhove S, Wittoeck J, Beghyn M, Van Gansbeke D, Van Kenhove A, Coomans A, Vincx M (1997) Role of the meiobenthos in Antarctic ecosytems. In: Caschetto S (ed) Belgian research programme on the Antarctic: scientific results of phase III (1992–1996), Volume I: 1–59. Federal Office for Scientific, Technical and Cultural Affairs, Brussel, pp 326–385Google Scholar
  118. Vanhove S, Vermeeren H, Vanreusel A (2004) Meiofauna towards the South Sandwich Trench (750–6,300 m), focus on nematodes. Deep-Sea Res Part II 51:1665–1687CrossRefGoogle Scholar
  119. Vaughan DG, Doake CSM (1996) Recent atmospheric warming and retreat of ice shelves on the Antarctic Peninsula. Nature 379:328–331CrossRefGoogle Scholar
  120. Veit-Köhler G (2004) Kliopsyllus andeep sp. n. (Copepoda: Harpacticoida) from the Antarctic deep sea—a copepod closely related to certain shallow-water species. Deep-Sea Res Part II 51:1629–1641CrossRefGoogle Scholar
  121. Veit-Köhler G, Laudien J, Knott J, Velez J, Sahade R (2008) Meiobenthic colonisation of soft sediments in arctic glacial Kongsfjorden (Svalbard). J Exp Mar Biol Ecol 363:58–65CrossRefGoogle Scholar
  122. Veit-Köhler G, Gerdes D, Quiroga E, Hebbeln D, Sellanes J (2009) Metazoan meiofauna within the oxygen-minimum zone off Chile: results of the 2001-PUCK expedition. Deep-Sea Res Part II 56:1105–1111CrossRefGoogle Scholar
  123. Veit-Köhler G, Guilini K, Peeken I, Sachs O, Sauter EJ, Würzberg L (2011) Antarctic deep-sea meiofauna and bacteria react to the deposition of particulate organic matter after a phytoplankton bloom. Deep-Sea Res Part II. doi: 10.1016/j.dsr2.2011.05.008 Google Scholar
  124. Vincx M, Bett BJ, Dinet A, Ferrero T, Gooday AJ, Lambshead PJD, Pfannkuche O, Soltwedel T, Vanreusel A (1994) Meiobenthos of the deep northeast Atlantic. Adv Mar Biol 30:1–88CrossRefGoogle Scholar
  125. Waide RB, Willig MR, Steiner CF, Mittelbach G, Gough L, Dodson SI, Juday GP, Parmenter R (1999) The relationship between productivity and species richness. Annu Rev Ecol Syst 30:257–300CrossRefGoogle Scholar
  126. Williams R (1972) The abundance and biomass of the interstitial fauna of a graded series of shell gravels in relation to available space. J Anim Ecol 41:623–646CrossRefGoogle Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Armin Rose
    • 1
  • Jeroen Ingels
    • 2
    Email author
  • Maarten Raes
    • 3
  • Ann Vanreusel
    • 3
  • Pedro Martínez Arbizu
    • 4
  1. 1.BioConsult SH GmbH & Co KGHusumGermany
  2. 2.Plymouth Marine LaboratoryPlymouthUK
  3. 3.Marine Biology Section, Biology DepartmentGhent UniversityGhentBelgium
  4. 4.Senckenberg am Meer WilhelmshavenWilhelmshavenGermany

Personalised recommendations