Advertisement

Marine Biodiversity

, Volume 45, Issue 2, pp 271–286 | Cite as

Invertebrate diversity of the unexplored marine western margin of Australia: taxonomy and implications for global biodiversity

  • Gary C. B. Poore
  • Lynda Avery
  • Magda Błażewicz-Paszkowycz
  • Joanna Browne
  • Niel L. Bruce
  • Sarah Gerken
  • Chris Glasby
  • Elizabeth Greaves
  • Anna W. McCallum
  • David Staples
  • Anna Syme
  • Joanne Taylor
  • Genefor Walker-Smith
  • Mark Warne
  • Charlotte Watson
  • Alan Williams
  • Robin S. Wilson
  • Skipton Woolley
Original Paper

Abstract

However derived, predictions of global marine species diversity rely on existing real data. All methods, whether based on past rates of species descriptions, on expert opinion, on the fraction of undescribed species in samples collected, or on ratios between taxa in the taxonomic hierarchy, suffer the same limitation. Here we show that infaunal macrofauna (crustaceans and polychaetes) of the lower bathyal depth range are underrepresented among available data and documented results from Australia.

The crustacean and polychaete fauna (only partially identified) of the bathyal continental margin of Western Australia comprised 805 species, representing a largely novel and endemic fauna. Overall, 94.6% of crustacean species were undescribed, while 72% of polychaete species were new to the Australian fauna, including all tanaidaceans, amphipods, and cumaceans, as well as most isopods. Most species were rare, and the species accumulation rate showed no sign of reaching an asymptote with increasing area sampled. Similar data are likely for the largely unexplored bathyal regions. This leads us to conclude that the numbers upon which extrapolations to larger areas are based are too low to provide confidence. The Southern Australian and Indo-West Pacific deep-sea regions contribute significantly to global species diversity. These regions and bathyal and abyssal habitats generally are extensive, but are so-far poorly sampled. They appear to be dominated by taxonomically poorly worked and species-rich taxa with limited distributions. The combination of high species richness among infaunal taxa—compared to better known taxa with larger individuals, higher endemism than presently acknowledged because of the presence of cryptic species, the low proportion of described species in these taxa, and the vast extent of unexplored bathyal and abyssal environments—will lead to further accumulation of new species as more and more deep sea regions are explored. It remains to be tested whether ratios of 10 or more undescribed to described species, found in this study for the dominant taxa and for the deep Southern Ocean and the Indo-West Pacific, are replicable in other areas. Our data and similar figures from other remote regions, and the lack of faunal overlap, suggest that Appeltans et al.’s (Current Biology 22:1–14, 2012) estimate that between one-third and two-thirds of the world’s marine fauna is undescribed is low, and that Mora et al.’s (PLoS Biol 9(8):e1001127. doi:10.1371/journal.pbio.1001127, 2011) of 91% is more probable. We conclude that estimates of global species, however made, are based on limited data.

Keywords

Marine diversity Species estimates Australia Crustacea Polychaetes Annelida Taxonomy Endemism 

Notes

Acknowledgments

We are grateful to many colleagues from CSIRO Marine and Atmospheric Research for their contributions to the Voyages of Discovery research program. We thank Nic Bax for help in securing funds, Rudy Kloser for his part in leadership of the surveys, Franzis Althaus who prepared the map, and Mark Lewis, Bruce Barker, and Karen Gowlett-Holmes for taking the samples while on board the FRV Southern Surveyor. They were assisted by Julian Finn (Museum Victoria). We acknowledge the Commonwealth Department of Sustainability, Environment, Water, Population, and Communities, and the CSIRO Wealth from Oceans Flagship for financial support and the field and laboratory components of the Voyages of Discovery program. We appreciate the valuable contribution of Jim Lowry (Australian Museum) who identified some amphipods, Jean Just (Copenhagen) who commented on some asellote isopod identifications, Kamille Hammerstrom (Moss Landing Marine Laboratories) who provided data from the Californian study, and anonymous referees for commentary on earlier versions of this paper.

This work has been funded through the National Environmental Research Program (NERP) program, an Australian Government initiative supporting world class, public good research. The NERP Marine Biodiversity Hub is a collaborative partnership between the University of Tasmania, CSIRO Wealth from Oceans Flagship, Geoscience Australia, Australian Institute of Marine Science, Museum Victoria, Charles Darwin University, and the University of Western Australia (www.nerpmarine.edu.au). The contribution of M. Błażewicz-Paszkowycz was supported by the National Science Centre, Poland (contract 7984/B/P01/2011/40). The paper is a contribution to COMARGE (Continental Margin Ecosystems) (http://www.ifremer.fr/comarge/en/index.html), one of 14 Census of Marine Life (CoML http://www.coml.org/) field projects, dedicated to the description and understanding of biodiversity patterns on continental margins.

Contributions of the authors

G. Poore prepared the first draft of the manuscript and saw it to publication; he and N. Bruce identified and commented on the isopods, M. Błażewicz-Paszkowycz contributed data on tanaidaceans, A. Syme on myodocopid ostracods, G. Walker-Smith on amphipods, cumaceans, and leptostracans with help from J. Taylor for Phoxocephalidae and S. Gerken on cumaceans, M. Warne on podocopid and platycopid ostracods; E. Greaves, C. Glasby, C. Watson, S. Woolley and R. Wilson identified polychaetes and R. Wilson contributed to the discussion of global diversity; J. Browne and D. Staples extracted specimens from sediments and sorted to major taxon; Anna McCallum calculated the species accumulation curves; and A. Williams initiated and organised the sampling, managed the research program and provided valuable insights into the discussion.

Supplementary material

12526_2014_255_MOESM1_ESM.docx (28 kb)
ESM 1 (DOCX 27 kb)
12526_2014_255_MOESM2_ESM.docx (58 kb)
ESM 2 (DOCX 57 kb)

References

  1. Albano PG, Sabelli B, Bouchet P (2011) The challenge of small and rare species in marine biodiversity surveys: microgastropod diversity in a complex tropical coastal environment. Biodivers Conserv 20:3223–3237CrossRefGoogle Scholar
  2. Appeltans W, Ahyong ST, Anderson G, Angel MV, Artois T, Bailly N, Bamber RN, Barber A, Bartsch I, Berta A, Błażewicz-Paszkowycz M, Bock P, Boxshall GA, Boyko CB, Brandão SN, Bray RA, Bruce NL, Cairns SD, Chan T-Y, Cheng L, Collins AG, Cribb T, Curini-Galletti M, Dahdouh-Guebas F, Davie PJF, Dawson MN, De Clerck O, Decock W, De Grave S, de Voogd NJ, Domning DP, Emig CC, Erséus C, Eschmeyer WN, Fauchald K, Fautin DG, Feist SW, Fransen CHJM, Furuya H, Garcia-Alvarez O, Gerken S, Gibson D, Gittenberger A, Gofas S, Gómez-Daglio L, Gordon DP, Guiry MD, Hernandez F, Hoeksema BW, Hopcroft RR, Jaume D, Kirk PM, Koedam N, Koenemann S, Kolb JB, Kristensen RM, Kroh A, Lambert G, Lazarus DB, Lemaitre R, Longshaw M, Lowry J, Macpherson E, Madin LP, Mah CL, Mapstone G, McLaughlin PA, Mees J, Meland K, Messing CG, Mills CE, Molodtsova TN, Mooi RD, Neuhaus B, Ng PKL, Nielsen C, Norenburg JL, Opresko DM, Osawa M, Paulay G, Perrin W, Pilger JF, Poore GCB, Pugh PJA, Read GB, Reimer JD, Rius M, Rocha RM, Saiz-Salinas JI, Scarabino V, Schierwater B, Schmidt-Rhaesa A, Schnabel KE, Schotte M, Schuchert P, Schwabe E, Segers H, Self-Sullivan C, Shenkar N, Siegel V, Sterrer W, Stöhr S, Swalla BJ, Tasker ML, Thuesen EV, Timm T, Todaro MA, Turon X, Tyler S, Uetz P, van der Land J, Vanhoorne B, van Ofwegen LP, van Soest RWM, Vanaverbeke J, Walker-Smith GK, Walter TC, Warren A, Williams GC, Wilson SP, Costello MJ (2012) The magnitude of global marine species diversity. Current Biology 22:1–14 doi.org/ 10.1016/j.cub.2012.09.036
  3. Bamber RN (2005) The tanaidaceans (Arthropoda: Crustacea: Peracarida: Tanaidacea) of Esperance, Western Australia. In: Wells FE, Walker DI, Kendrick GA (eds) The Marine Flora and Fauna of Esperance, Western Australia. Western Australian Museum, Perth, pp 613–727Google Scholar
  4. Bastrop R, Jürss K, Sturmbauer C (1998) Cryptic species in marine polychaete and their independent introduction from North America to Europe. Mol Biol Evol 15:97–103PubMedCrossRefGoogle Scholar
  5. Błażewicz-Paszkowycz M, Bamber RN (2007a) New apseudomorph tanaidaceans (Crustacea: Peracarida: Tanaidacea) from eastern Australia: Apseudidae, Whiteleggiidae, Metapseudidae and Pagurapseudidae. Memoirs of Museum Victoria 64:107–148Google Scholar
  6. Błażewicz-Paszkowycz M, Bamber RN (2007b) Parapseudid tanaidaceans (Crustacea: Tanaidacea: Apseudomorpha) from eastern Australia. Zootaxa 1401:1–32Google Scholar
  7. Błażewicz-Paszkowycz M, Bamber RN (2009) A new genus of a new Austral family of paratanaoid tanaidacean (Crustacea: Peracarida: Tanaidacea), with two new species. Memoirs of Museum Victoria 66:5–15Google Scholar
  8. Błażewicz-Paszkowycz M, Bamber RN (2012) The shallow-water Tanaidacea (Arthropoda: Malacostraca: Peracarida) of the Bass Strait, Victoria, Australia (other than the Tanaidae). Memoirs of Museum Victoria 69:1–235Google Scholar
  9. Błażewicz-Paszkowycz M, Bamber RN, Anderson G (2012) Diversity of Tanaidacea (Crustacea: Peracarida) in the world's oceans – how far have we come? PLoS One 7(4):e33068. doi: 10.1371/journal.pone.0033068 PubMedCentralPubMedCrossRefGoogle Scholar
  10. Bleeker J, van der Spoel S (1992) Catalogue of the Polychaeta collected by the Siboga Expedition and type specimens of the Polychaeta in the Zoological Museum of Amsterdam. Bulletin Zoölogisch Museum, Universiteit van Amsterdam 13:121–166Google Scholar
  11. Bleidorn C, Kruse I, Albrecht S, Bartolomaeus T (2006) Mitochondrial sequence data expose the putative cosmopolitan polychaete Scoloplos armiger (Annelida, Orbiniidae) as a species complex. BMC Evol Biol 6:47–59. doi: 10.1186/1471-2148-6-47 PubMedCentralPubMedCrossRefGoogle Scholar
  12. Bouchet P (2006) The magnitude of marine biodiversity. In: Duarte CM (ed) The exploration of marine biodiversity Scientific and technological challenges. Fundación BBVA, Bilbao, pp 33–63Google Scholar
  13. Bouchet P (2009) From specimens to data, and from seashells to molluscs: the Panglao Marine Biodiversity Project. Vita Malacologica 8:1–8Google Scholar
  14. Bouchet P, Lozouet P, Maestrati P, Heros V (2002) Assessing the magnitude of species richness in tropical marine environments: exceptionally high numbers of molluscs at a New Caledonia site. Biol J Linn Soc 75:421–436CrossRefGoogle Scholar
  15. Bouchet P, Lozouet P, Sysoev A (2009a) An inordinate fondness for turrids. Deep-Sea Res II 56:1724–1731CrossRefGoogle Scholar
  16. Bouchet P, Ng PK, Largo D, Tan S (2009b) PANGLAO 2004–investigations of the marine species richness in the Philippines. Raffles Bull Zool 20:1–19Google Scholar
  17. Brandt A (2004) Abundance, diversity and community patterns of Isopoda (Crustacea) in the Weddell Sea and in the Bransfield Strait, Southern Ocean. Antarct Sci 16:5–10CrossRefGoogle Scholar
  18. Brandt A, Brix S, Brökeland W, Choudhury M, Kaiser S, Malyutina M (2007a) Deep-sea isopod biodiversity, abundance, and endemism in the Atlantic sector of the Southern Ocean – Results from the ANDEEP I–III expeditions. Deep-Sea Res II 54:1760–1775Google Scholar
  19. Brandt A, De Broyer C, De Mesel I, Ellingsen KE, Gooday AJ, Hilbig B, Linse K, Thomson MRA, Tyler PA (2007b) The biodiversity of the deep Southern Ocean benthos. Philos Trans R Soc B Biol Sci 362(1477):39–66. doi: 10.1098/rstb.2006.1952 CrossRefGoogle Scholar
  20. Brandt A, Gooday A, Brandao SN, Brix S, Brokeland W, Cedhagen T, Choudhury M, Cornelius N, Danis B, De Mesel I, Diaz RJ, Gillan DC, Ebbe B, Howe JA, Janussen D, Kaiser S, Linse K, Malyutina M, Pawlowski J, Raupach MJ, Vanreusel A (2007c) First insights into the biodiversity and biogeography of the Southern Ocean deep sea. Nature 447:307–311PubMedCrossRefGoogle Scholar
  21. Broekeland W, Raupach MJ (2008) A species complex within the isopod genus Haploniscus (Crustacea: Malacostraca: Peracarida) from the Southern Ocean deep sea: a morphological and molecular approach. Zool J Linnean Soc 152:655–708CrossRefGoogle Scholar
  22. Brökeland W, Choudhury M, Brandt A (2007) Composition, abundance and distribution of Peracarida from the Southern Ocean deep sea. Deep-Sea Res II 54:1752–1759. doi: 10.1016/j.dsr2.2007.07.014
  23. Butler AJ, Rees AJJ, Beesley P, Bax N (2010) Marine biodiversity in the Australian Region. PLoS ONE 5:e11831. doi: 10.1371/journal.pone.0011831
  24. Cadien DB, Lovell LL (eds) (2013) A taxonomic listing of benthic macro- and megainvertebrates from infaunal and epifaunal monitoring and research programs in the Southern California Bight http://www.scamit.org/publications/SCAMIT-ed8b.pdf. 8th edn. Southern California Association of Marine Invertebrate Taxonomists, Los Angeles
  25. Calvo M, Templado J, Oliverio M, Machordom A (2009) Hidden Mediterranean biodiversity: molecular evidence for a cryptic species complex within the reef building vermetid gastropod Dendropoma petraeum (Mollusca: Caenogastropoda). Biol J Linn Soc 96:898–912. doi: 10.1111/j.1095-8312.2008.01167.x CrossRefGoogle Scholar
  26. Carney RS (2005) Zonation of deep biota on continental margins. Oceanogr Mar Biol Annu Rev 43:211–278Google Scholar
  27. Chapman AD (2009) Numbers of living species in Australia and the world, 2nd edn. Australian Biological Resources Study, CanberraGoogle Scholar
  28. Clarke KR, Gorley RN (2006) Primer v6: User Manual/Tutorial. PRIMER-E, PlymouthGoogle Scholar
  29. Coleman N, Gason ASH, Poore GCB (1997) High species richness in the shallow marine waters of south-east Australia. Mar Ecol Prog Ser 154:17–26CrossRefGoogle Scholar
  30. Consalvey M, Clark MR, Rowden AA, Stocks K (2010) Life on seamounts. In: McIntyre AD (ed) Life in the world’s oceans: diversity, distribution, and abundance. Wiley-Blackwell, Oxford, pp 123–138. doi: 10.1371/journal.pone.0012110
  31. Costello MJ, Danovaro R, Halpin PN, Ojaveer H, Miloslavich P (2010) A census of marine biodiversity knowledge, resources, and future challenges. PLoS ONE 5:e12110. doi: 10.1371/journal.pone.0012110
  32. Costello MJ, May RM, Stork NE (2013a) Can we name Earth's species before they go extinct? Science 339:413–416PubMedCrossRefGoogle Scholar
  33. Costello MJ, Wilson S, Houlding B (2012) Predicting total global species richness using rates of species description and estimates of taxonomic effort. Syst Biol 61:871–883. doi: 10.1093/sysbio/syr080
  34. Costello MJ, Wilson S, Houlding B (2013b) More taxonomists describing significantly fewer species per unit effort may indicate that most species have been discovered. Syst Biol 62:616–624PubMedCrossRefGoogle Scholar
  35. Costello MJ, Wilson SP (2011) Predicting the number of known and unknown species in European seas using rates of description. Glob Ecol Biogeogr 20:319–330. doi: 10.1111/j.1466-8238.2010.00603.x CrossRefGoogle Scholar
  36. Currie DR, Sorokin SJ, Ward TM (2009) Infaunal macroinvertebrate assemblages of the eastern Great Australian Bight: effectiveness of a marine protected area in representing the region's benthic biodiversity. Mar Freshw Res 60:459–474. doi: 10.1071/MF08239 CrossRefGoogle Scholar
  37. Day JH (1967) A monograph on the Polychaeta of Southern Africa. Parts 1 and 2. Trustees of the British Museum (Natural History), LondonGoogle Scholar
  38. Doti B, Roccatagliata D, López Gappa J (2014) An inverse latitudinal biodiversity pattern in asellote isopods (Crustacea, Peracarida) from the Southwest Atlantic between 35° and 56°S. Mar Biodivers 44:115–125. doi: 10.1007/s12526-013-0187-y CrossRefGoogle Scholar
  39. Ellingsen K, Brandt A, Ebbe B, Linse K (2007) Diversity and species distribution of polychaetes, isopods and bivalves in the Atlantic sector of the deep Southern Ocean. Polar Biol 30:1265–1273CrossRefGoogle Scholar
  40. Eschmeyer WN, Fricke R, Fong JD, Polack D (2010) Marine fish biodiversity: a history of knowledge and discovery (Pisces). Zootaxa 2525:19–50Google Scholar
  41. Etter RJ, Rex MA, Chase MC, Quattro JM (1999) A genetic dimension to deep-sea biodiversity. Deep-Sea Res I 46:1095–1099. doi: 10.1016/S0967-0637(98)00100-9
  42. Fauchald K (1984) Polychaete distribution patterns, or: can animals with Palaeozoic cousins show large-scale geographic patterns? In: Hutchings PA (ed) Proceedings of the First International Polychaete Conference. Sydney. Linnean Society of New South Wales, Sydney, pp 1–6Google Scholar
  43. Fautin DG, Malarky L, Soberón J (2013) Latitudinal diversity of sea anemones (Cnidaria: Actiniaria). Biol Bull 224:89–98PubMedGoogle Scholar
  44. Fauvel P (1953) The fauna of India, including Pakistan, Ceylon, Burma and Malaya. Annelida Polychaeta. The Indian Press, AllahabadGoogle Scholar
  45. Fontaine B, Perrard A, Bouchet P (2012) 21 years of shelf life between discovery and description of new species. Curr Biol 22:R943–R944Google Scholar
  46. Gollner S, Fontaneto D, Arbizu PM (2011) Molecular taxonomy confirms morphological classification of deep-sea hydrothermal vent copepods (Dirivultidae) and suggests broad physiological tolerance of species and frequent dispersal along ridges. Mar Biol 158:221–231CrossRefGoogle Scholar
  47. Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391CrossRefGoogle Scholar
  48. Grassle JF, Maciolek NJ (1992) Deep-sea species richness: regional and local diversity estimates from quantitative bottom samples. Am Nat 139:313–341CrossRefGoogle Scholar
  49. Gray JS, Poore GCB, Ugland KI, Wilson RS, Olsgard F, Johannessen O (1997) Coastal and deep-sea benthic diversities compared. Mar Ecol Prog Ser 159:97–103CrossRefGoogle Scholar
  50. Griffiths CL (2005) Coastal marine biodiversity in East Africa. Indian Journal of Marine Sciences 33:35–41Google Scholar
  51. Halt MN, Kupriyanova EK, Cooper SJB, Rouse GW (2009) Naming species with no morphological indicators: species status of Galeolaria caespitosa (Annelida : Serpulidae) inferred from nuclear and mitochondrial gene sequences and morphology. Invertebr Syst 23:205–222. doi: 10.1071/IS09003 CrossRefGoogle Scholar
  52. Hammond PM (1994) Practical approaches to the estimation of the extent of biodiversity in speciose groups. Philos Trans R Soc B 345:119–136CrossRefGoogle Scholar
  53. Havermans C, Sonet G, d’Udekem d’Acoz G, Nagy ZT, Martin P, Brix S, Riehl T, Agrawal S, Held C (2013) Genetic and morphological divergences in the cosmopolitan deep-sea amphipod Eurythenes gryllus reveal a diverse abyss and a bipolar species. PLoS One 8(9):e74218. doi: 10.1371/journal.pone.0074218 PubMedCentralPubMedCrossRefGoogle Scholar
  54. Hughes DJ, Lamont PA, Levin LA, Packer M, Feeley K, Gage JD (2009) Macrofaunal communities and sediment structure across the Pakistan margin oxygen minimum zone, north-east Arabian Sea. Deep-Sea Res II 56:434–448. doi: 10.1016/j.dsr2.2008.05.030
  55. Kaiser S, Barnes DKA, Brandt A (2007) Slope and deep-sea abundance across scales: Southern Ocean isopods show how complex the deep sea can be. Deep-Sea Res II 54:1776–1789Google Scholar
  56. Kensley B (2001) Biogeography of the marine Isopoda of the Indian Ocean, with a check-list of species and records. In: Kensley B, Brusca RC (eds) Isopod systematics and evolution. Balkema, Rotterdam. Crustacean Issues 13:205–264Google Scholar
  57. Kensley B, Schotte M (2002) New species and records of Asellota from the Indian Ocean (Crustacea: Peracarida: Isopoda). J Nat Hist 36:1421–1461CrossRefGoogle Scholar
  58. Kensley B, Schotte M, Poore GCB (2007) New species and records of valviferan isopods (Crustacea: Isopoda: Valvifera) from the Indian Ocean. Proc Biol Soc Wash 120:429–445 doi: 10.2988/0006-324X(2007)120[429:NSAROV]2.0.CO;2
  59. Kensley B, Schotte M, Poore GCB (2009) Gnathiid isopods (Crustacea: Isopoda: Gnathiidae), mostly new, from the Indian Ocean. Proc Biol Soc Wash 122:32–51. doi: 10.2988/07-16.1 CrossRefGoogle Scholar
  60. Knowlton N (1993) Sibling species in the sea. Annu Rev Ecol Syst 24:189–216CrossRefGoogle Scholar
  61. Kongsrud JA, Budaeva N, Barnich R, Oug E, Bakken T (2013) Benthic polychaetes from the northern Mid-Atlantic Ridge between the Azores and the Reykjanes Ridge. Mar Biol Res 9:516–546. doi: 10.1080/17451000.2012.749997 CrossRefGoogle Scholar
  62. Kornicker LS (1994) Ostracoda (Myodocopina) of the SE Australian continental slope, part 1. Smithsonian Contributions to Zoology 553:1–200CrossRefGoogle Scholar
  63. Kornicker LS (1995) Ostracoda (Myodocopina) of the SE Australian continental slope, part 2. Smithsonian Contributions to Zoology 562:1–97Google Scholar
  64. Kornicker LS, Poore GCB (1996) Ostracoda (Myodocopina) of the SE Australian continental slope, part 3. Smithsonian Contributions to Zoology 573:1–186Google Scholar
  65. Lambshead PJD, Boucher G (2003) Marine nematode deep-sea biodiversity – hyperdiverse or hype? J Biogeogr 30:475–485CrossRefGoogle Scholar
  66. Last PR, White WT, Gledhill DC, Pogonoski JJ, Lyne VD, Bax N (2011) Biogeographical structure and affinities of the marine demersal ichthyofauna of Australia. J Biogeogr 38:1484–1496CrossRefGoogle Scholar
  67. Levin LA, Gage JD, Martin C, Lamont PA (2000) Macrobenthic community structure within and beneath the oxygen minimum zone, NW Arabian Sea. Deep-Sea Res II 47:189–226. doi: 10.1016/S0967-0645(99)00103-4
  68. Malyutina M, Brandt A (2007) Diversity and zoogeography of Antarctic deep-sea Munnopsidae (Crustacea, Isopoda, Asellota). Deep-Sea Res II 54:1790–1805CrossRefGoogle Scholar
  69. Matabos M, Plouviez S, Hourdez S, Desbruyères D, Legendre P, Warén A, Jollivet D, Thiébaut E (2011) Faunal changes and geographic crypticism indicate the occurrence of a biogeographic transition zone along the southern East Pacific Rise. J Biogeogr 38:575–594. doi: 10.1111/j.1365-2699.2010.02418.x CrossRefGoogle Scholar
  70. May RM (1992) Bottoms up for the oceans. Nature 357:278–279CrossRefGoogle Scholar
  71. McCallum AW (2011) Decapod crustacean diversity along Australia's western continental margin. PhD thesis, University of Melbourne, MelbourneGoogle Scholar
  72. McCallum AW, Poore GCB, Williams A, Althaus F, O'Hara T (2013) Environmental predictors of decapod species richness and turnover along an extensive Australian continental margin (13–35ºS). Mar Ecol 34:298–312CrossRefGoogle Scholar
  73. McClain CR, Mincks Hardy S (2010) The dynamics of biogeographic ranges in the deep sea. Proc R Soc B Biol Sci 277:3533–3546. doi: 10.1098/rspb.2010.1057 CrossRefGoogle Scholar
  74. McEnnulty FR, Gowlett-Holmes KL, Williams A, Althaus F, Fromont J, Poore GCB, O'Hara TD, Marsh L, Kott P, Slack-Smith S, Alderslade P, Kitahara MV (2011) The deepwater megabenthic invertebrates on the continental margin of Australia (100–1100 m depths): composition, distribution and novelty. Records of the Western Australian Museum, Supplement 80:1–191Google Scholar
  75. Menot L, Sibuet M, Carney RS, Levin LA, Rowe GT, Billett DSM, Poore GCB, Kitazato H, Vanreusel A, Galéron J, Lavrado HP, Sellanes J, Ingole B, Krylova EM (2010) New perceptions of continental margin biodiversity. In: McIntyre AD (ed) Life in the world’s oceans: diversity, distribution, and abundance. Wiley-Blackwell, Oxford, pp 79–101CrossRefGoogle Scholar
  76. Menzel L, George KH, Arbizu PM (2011) Submarine ridges do not prevent large-scale dispersal of abyssal fauna: a case study of Mesocletodes (Crustacea, Copepoda, Harpacticoida). Deep-Sea Res I 58:839–864. doi: 10.1016/j.dsr.2011.05.008
  77. Mora C, Rollo A, Tittensor DP (2013) Comment on “Can we name Earth’s species before they go extinct?”. Science 341(6143):237. doi: 10.1126/science.1237254 PubMedCrossRefGoogle Scholar
  78. Mora C, Tittensor DP, Adl S, Simpson AGB, Worm B (2011) How many species are there on Earth and in the ocean? PLoS Biol 9(8):e1001127. doi: 10.1371/journal.pbio.1001127 PubMedCentralPubMedCrossRefGoogle Scholar
  79. Mora C, Tittensor DP, Myers RA (2008) The completeness of taxonomic inventories for describing the global diversity and distribution of marine fishes. Proc R Soc B 275:149–155PubMedCentralPubMedCrossRefGoogle Scholar
  80. Moura CJ, Harris DJ, Cunha MR, Rogers AD (2008) DNA barcoding reveals cryptic diversity in marine hydroids (Cnidaria, Hydrozoa) from coastal and deep-sea environments. Zool Scr 37:93–108. doi: 10.1111/j.1463-6409.2007.00312.x Google Scholar
  81. O'Hara TD, Rowden AA, Bax NJ (2011) A Southern Hemisphere bathyal fauna is distributed in latitudinal bands. Curr Biol 21:1–5. doi: 10.1016/j.cub.2011.01.002 CrossRefGoogle Scholar
  82. Oliver J, Hammerstrom K, McPhee-Shaw E, Slattery P, Oakden J, Kim S, Hartwell SI (2011) High species density patterns in macrofaunal invertebrate communities in the marine benthos. Mar Ecol 32:278–288. doi: 10.1111/j.1439-0485.2011.00461.x CrossRefGoogle Scholar
  83. Palma M, Quiroga E, Gallardo VA, Arntz W, Gerdes D, Schneider W, Hebbeln D (2005) Macrobenthic animal assemblages of the continental margin off Chile (22° to 42°S). J Mar Biol Assoc U K 85:233–245. doi: 10.1017/S0025315405011112h CrossRefGoogle Scholar
  84. Pavithran S, Ingole BS, Nanajkar M, Nath BN (2007) Macrofaunal diversity in the Central Indian Ocean Basin. Biodiversity 8:11–16CrossRefGoogle Scholar
  85. Pawlowski J, Fahrni J, Lecroq B, Longet D, Cornelius N, Excoffier L, Cedhagen T, Gooday AJ (2007) Bipolar gene flow in deep-sea benthic foraminifera. Mol Ecol 16:4089–4096PubMedCrossRefGoogle Scholar
  86. Pitcher CR, Doherty P, Arnold P, Hooper J, Gribble N, Bartlett C, Browne M, Campbell N, Cannard T, Cappo M, Carini G, Chalmers S, Cheers S, Chetwynd D, Colefax A, Coles R, Cook S, Davie P, De'ath G, Devereux D, Done B, Donovan T, Ehrke B, Ellis N, Ericson G, Fellegara I, Forcey K, Furey M, Gledhill D, Good N, Gordon S, Haywood M, Jacobsen I, Johnson J, Jones M, Kinninmoth S, Kistle S, Last P, Leite A, Marks S, McLeod I, Oczkowicz S, Rose C, Seabright D, Sheils J, Sherlock M, Skelton P, Smith D, Smith G, Speare P, Stowar M, Strickland C, Sutcliffe P, Van der Geest C, Venables W, Walsh C, Wassenberg T, Welna A, Yearsley G (2007) CRC Reef Research Task Final Report. Seabed biodiversity on the continental shelf of the Great Barrier Reef World Heritage Area, AIMS/CSIRO/QM/QDPI, TownsvilleGoogle Scholar
  87. Poore GCB, Andreakis N (2011) Morphological, molecular and biogeographic evidence support two new species in the Uroptychus naso complex (Crustacea: Decapoda: Chirostylidae). Mol Phylogenet Evol 60:152–169. doi: 10.1016/j.ympev.2011.03.032 PubMedCrossRefGoogle Scholar
  88. Poore GCB, Andreakis N (2012) The Agononida incerta species complex unravelled (Crustacea: Decapoda: Anomura: Munididae). Zootaxa 3429:1–29Google Scholar
  89. Poore GCB, Just J, Cohen BF (1994) Composition and diversity of Crustacea Isopoda of the southeastern Australian continental slope. Deep-Sea Res I 41:677–693. doi: 10.1016/0967-0637(94)90049-3
  90. Poore GCB, McCallum AW, Taylor J (2008) Decapod Crustacea of the continental margin of southwestern and central Western Australia: preliminary identifications of 524 species from FRV Southern Surveyor voyage SS10-2005. Museum Victoria Science Reports 11:1–106Google Scholar
  91. Poore GCB, O'Hara TD (2007) Marine biogeography and biodiversity of Australia. In: Connell SD, Gillanders BM (eds) Marine Ecology. Oxford University Press, South Melbourne, pp 177–198Google Scholar
  92. Poore GCB, Wilson GDF (1993) Marine species richness (with reply from R.M. May). Nature 361:597–598. doi: 10.1038/361597a0 CrossRefGoogle Scholar
  93. Przeslawski R, McArthur MA, Anderson TJ (2013) Infaunal biodiversity patterns from Carnarvon Shelf (Ningaloo Reef), Western Australia. Mar Freshw Res 64:573–583CrossRefGoogle Scholar
  94. Rao DVS (2005) Comprehensive review of the records of the biota of the Indian Seas and introduction of non-indigenous species. Aquat Conserv Mar Freshwat Ecosyst 15:117–146. doi: 10.1002/aqc.659 CrossRefGoogle Scholar
  95. Raupach MJ, Malyutina M, Brandt A, Wägele JW (2007) Molecular data reveal a highly diverse species flock within the munnopsoid deep-sea isopod Betamorpha fusiformis (Barnard, 1920) (Crustacea: Isopoda: Asellota) in the Southern Ocean. Deep Sea Research Part II 54:1820–1830CrossRefGoogle Scholar
  96. Raupach MJ, Mayer C, Malyutina M, Wägele JW (2009) Multiple origins of deep-sea Asellota (Crustacea: Isopoda) from shallow waters revealed by molecular data. Proc R Soc B 276:799–808PubMedCentralPubMedCrossRefGoogle Scholar
  97. Raupach MJ, Wägele JW (2006) Distinguishing cryptic species in Antarctic Asellota (Crustacea: Isopoda) – a preliminary study of mitochondrial DNA in. Antarct Sci 18:191–198CrossRefGoogle Scholar
  98. Rex MA (1981) Community structure in the deep-sea benthos. Annu Rev Ecol Syst 12:331–353CrossRefGoogle Scholar
  99. Rex MA, Crame JA, Stuart CT, Clarke A (2005) Large-scale biogeographic patterns in marine mollusks: a confluence of history and productivity. Ecology 86:2288–2297CrossRefGoogle Scholar
  100. Rex MA, Etter RJ (2010) Deep-sea biodiversity. Harvard University Press, Cambridge, Mass, Pattern and scaleGoogle Scholar
  101. Rex MA, Etter RJ, Morris JS, Crouse J, McClain CR, Johnson NA, Stuart CT, Deming JW, Thies R, Avery R (2006) Global bathymetric patterns of standing stock and body size in the deep-sea benthos. Mar Ecol Prog Ser 317:1–8CrossRefGoogle Scholar
  102. Richer de Forges B, Chan T-Y, Corbari L, Lemaitre R, Macpherson E, Ahyong ST (2013) The MUSORSTOM-TDSB deep-sea benthos exploration programme (1976–2012): An overview of crustacean discoveries and new perspectives on deep-sea zoology and biogeography. In: Ahyong ST, Chan T-Y, Corbari L, Ng PKL (eds), Tropical Deep-Sea Benthos Vol. 27. Mémoires du Muséum National d'Histoire Naturelle, Paris 204:13–66Google Scholar
  103. Schotte M, Kensley B (2005) New species and records of Flabellifera from the Indian Ocean (Crustacea: Peracarida: Isopoda). J Nat Hist 39:1211–1282CrossRefGoogle Scholar
  104. Schüller M, Ebbe B (2007) Global distributional patterns of selected deep-sea Polychaeta (Annelida) from the Southern Ocean. Deep-Sea Res II 54:1737–1751. doi: 10.1016/j.dsr2.2007.07.005
  105. Shank TM (2010) Seamounts: deep-ocean laboratories of faunal connectivity, evolution, and endemism. Oceanography 23:108–122. doi: 10.5670/oceanog.2010.65 CrossRefGoogle Scholar
  106. Shtilerman E, Thompson CJ, Stone L, Bode M, Burgman M (2014) A novel method for estimating the number of species within a region. Proc R Soc B Biol Sci 281 (1779) doi: 10.1098/rspb.2013.3009
  107. Šlapeta J, López-García P, Moreira D (2006) Global dispersal and ancient cryptic species in the smallest marine eukaryotes. Mol Biol Evol 23:23–29PubMedCrossRefGoogle Scholar
  108. Thoma JN, Pante E, Brugler MR, France SC (2009) Deep-sea octocorals and antipatharians show no evidence of seamountscale endemism in the NW Atlantic. Mar Ecol Prog Ser 397:25–35CrossRefGoogle Scholar
  109. Ugland KI, Gray JS, Ellingsen KE (2003) The species-accumulation curve and estimation of species richness. J Anim Ecol 72:888–897CrossRefGoogle Scholar
  110. Vrijenhoek RC (2009) Cryptic species, phenotypic plasticity, and complex life histories: assessing deep-sea faunal diversity with molecular markers. Deep-Sea Res II 56:1713–1723. doi: 10.1016/j.dsr2.2009.05.016
  111. Vrijenhoek RC, Schutz SJ, Gustafson RG, Lutz RA (1994) Cryptic species of deep-sea clams (Mollusca: Bivalvia: Vesicomyidae) from hydrothermal vent and cold-water seep environments. Deep-Sea Res I 41:1171–1189. doi: 10.1016/0967-0637(94)90039-6
  112. Ward TJ, Rainer SF (1988) Decapod crustaceans of the North West Shelf, a tropical continental shelf of north-western Australia. Aust J Mar Freshwat Res 39:751–765CrossRefGoogle Scholar
  113. Whittaker RH (1970) Communities and ecosystems. Macmillan, LondonGoogle Scholar
  114. Williams A, Althaus F, Dunstan P, Poore GCB, Bax NJ, Kloser RJ, McEnnulty FR (2010a) Scales of habitat heterogeneity and megabenthos biodiversity on an extensive Australian continental margin (100–1100 m depths). Mar Ecol 31:222–236. doi: 10.1111/j.1439-0485.2009.00355.x
  115. Williams A, Koslow JA, Last PR (2001) Diversity, density and community structure of the demersal fish fauna of the continental slope off western Australia (20–35°S). Mar Ecol Prog Ser 212:247–263CrossRefGoogle Scholar
  116. Williams MJ, Ausubel J, Poiner I, Garcia SM, Baker DJ, Clark MR, Mannix H, Yarincik K, Halpin PN (2010b) Making marine life count: a new baseline for policy. PLoS Biol 8(10):e1000531PubMedCentralPubMedCrossRefGoogle Scholar
  117. Wilson GDF (2008) Local and regional species diversity of benthic Isopoda (Crustacea) in the deep Gulf of Mexico. Deep-Sea Res II 55:2634–2649Google Scholar
  118. Wilson RS, Hutchings P, Glasby CJ (eds) (2003) Polychaetes: an interactive Identification Guide (CD-ROM). CSIRO Publishing, MelbourneGoogle Scholar
  119. Woolley SNC, McCallum AW, Wilson R, O'Hara TD, Dunstan PK (2013) Fathom out: biogeographical subdivision across the Western Australian continental margin – a multispecies modelling approach. Divers Distrib 19:1506–1517. doi: 10.1111/ddi.12119 CrossRefGoogle Scholar
  120. WoRMS Editorial Board (2014) World Register of Marine Species. Available from http://www.marinespecies.org at VLIZ. Accessed 2014-05-16.

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Gary C. B. Poore
    • 1
  • Lynda Avery
    • 1
  • Magda Błażewicz-Paszkowycz
    • 2
  • Joanna Browne
    • 1
  • Niel L. Bruce
    • 3
    • 9
    • 10
  • Sarah Gerken
    • 4
  • Chris Glasby
    • 5
  • Elizabeth Greaves
    • 1
  • Anna W. McCallum
    • 1
  • David Staples
    • 1
  • Anna Syme
    • 1
  • Joanne Taylor
    • 1
  • Genefor Walker-Smith
    • 1
  • Mark Warne
    • 6
  • Charlotte Watson
    • 5
  • Alan Williams
    • 7
  • Robin S. Wilson
    • 1
  • Skipton Woolley
    • 1
    • 8
  1. 1.Museum VictoriaMelbourneAustralia
  2. 2.Department of Polar Biology and Ocean biologyUniversity of ŁódźŁódźPoland
  3. 3.Museum of Tropical QueenslandQueensland MuseumTownsvilleAustralia
  4. 4.Department of Biological Sciences and Liberal Studies ProgramUniversity of AlaskaAnchorageUSA
  5. 5.Museum & Art Gallery of the Northern TerritoryDarwinAustralia
  6. 6.School of Life and Environmental SciencesDeakin UniversityBurwoodAustralia
  7. 7.CSIRO Wealth from Oceans FlagshipMarine LaboratoriesHobartAustralia
  8. 8.Quantitative and Applied Ecology Group, The School of BotanyThe University of MelbourneMelbourneAustralia
  9. 9.School of Marine and Tropical BiologyJames Cook UniversityTownsvilleAustralia
  10. 10.Water Research Group (Ecology)North-West UniversityPotchefstroomSouth Africa

Personalised recommendations