Marine Biodiversity

, Volume 45, Issue 1, pp 7–61 | Cite as

A new genus and new species of Desmosomatidae Sars, 1897 (Isopoda) from the eastern South Atlantic abyss described by means of integrative taxonomy

  • Saskia Brix
  • Florian Leese
  • Torben Riehl
  • Terue Cristina Kihara
Original Article


We used a combined morphological and genetic approach for species delineation within desmosomatid isopods in the eastern South Atlantic. Based on morphological data from light, scanning electron, and confocal laser scanning, microscopy as well as on mitochondrial (COI, 16S) and nuclear (18S) DNA markers, we describe two new species and a new genus. Chelator aequabilis is reported from the Guinea Basin and the Angola Basin. High intraspecific genetic variability did not allow final conclusions about relationships and species status of all analysed individuals. Due to the patterns of genetic variation and the subtle variation in some morphological characters, we conclude that more than one species might be hidden in C. aequabilis north of the Walvis Ridge. Chelator rugosus is described from the Cape Basin; the new monotypic genus Parvochelus is erected with the description of P. russus from the Guinea and the Brazil Basins. In Parvochelus, pereopod I bears a carpo-chela, especially the carpus is slender and long, its width is smaller than the merus width. The slender and long seta that is situated laterally to the carpo-propodal articulation is another characteristic feature. Despite the divergence within this species, shared lineages on both sides of the Mid-Atlantic Ridge suggest sporadic connectivity between populations on both sides. Our results document how molecular data can complement morphology in an integrative taxonomic approach elucidating biodiversity in the deep sea. Keys to the genera of Desmosomatidae and the species of Chelator are provided.


Isopoda DIVA Latitudinal gradient DNA barcoding Biogeography Identification key 



We would like to thank all pickers and sorters during the DIVA expeditions to provide a unique set of specimens. Michael Raupach and Christoph Held introduced Saskia Brix into the molecular world and helped in the laboratory during her research stay at the Ruhr University Bochum in 2005. Without the technical assistance of Karen Jeskulke and Andrea Ormos working hard on producing high-quality PCR products at the Smithsonian, the whole work would have been much slower. Special thanks go to Amy Driskell for her support. Stefanie Kaiser put energy into discussing and improving the key to genus level. Marco Büntzow introduced the first author to the CLSM and spent much effort into explaining the techniques. Marina Malyutina kindly translated Kussakin’s (1999) key to the Arctic Chelator species. Saskia Brix and Torben Riehl were supported by the German Research Foundation (DFG) under contract No. Br 1121/28-1 doing first steps in producing results from 2005–2007 in the working group of Angelika Brandt at the University of Hamburg. The Census of the Diversity of Abyssal Marine Life (CeDAMar) supported travels and the financial background for retrieving sequences in the frame of the project “DNA barcoding deep-sea Isopoda”. Torben Riehl was funded by the German National Academic Foundation (Studienstiftung des deutschen Volkes) while writing this article and acknowledges the support of the Marine Invertebrates Department at the Australian Museum. Kevin Kocot kindly checked the English. Finally, we would like to thank the subject editor Gary Poore and four anonymous referees for their comments improving the quality of our manuscript.


  1. Bickert T, Wefer G (1996) Later quarternary deep water circulation in the South Atlantic: reconstruction from carbonate dissolution and benthic stable isotops. In: The South Atlantic: present and past circulation. Springer, Heidelberg, pp 599–620Google Scholar
  2. Birstein JA (1963) Isopods from the ultra-abyssal zone of the Bougainville Trench. Zool Zh 42:814–834Google Scholar
  3. Böggemann M (2009) Polychaetes (Annelida) of the abyssal SE Atlantic. Org Divers Evol 9:251–428Google Scholar
  4. Bonatti E, Ligi M, Carrara G, Gasperini L, Turko N, Perfiliev S, Peyve A, Sciuto P (1996) Diffuse impact of the mid-atlantic ridge with the romanche transform: an ultracold ridge-transform intersection. J Geophys Res 101:8043–8054CrossRefGoogle Scholar
  5. Brandt A, Brenke N, Andres H-G, Brix S, Guerrero-Kommritz J, Mühlenhardt-Siegel U, Wägele J-W (2005) Diversity of peracarid crustaceans (Malacostraca) from the abyssal plain of the Angola Basin. Org Divers Evol 5:105–112CrossRefGoogle Scholar
  6. Brandt A, Gooday AJ, Brandao SN, Brix S, Brokeland W, Cedhagen T, Choudhury M, Cornelius N, Danis B, De Mesel I, Diaz RJ, Gillan DC, Ebbe B, Howe JA, Janussen D, Kaiser S, Linse K, Malyutina M, Pawlowski J, Raupach M, Vanreusel A (2007) First insights into the biodiversity and biogeography of the Southern Ocean deep sea. Nature 447:307–311CrossRefPubMedGoogle Scholar
  7. Brenke N (2005) An epibenthic sledge for operations on marine soft bottom and bedrock. Mar Technol Soc J 39:10–21CrossRefGoogle Scholar
  8. Brix S (2006a) A new genus and new species of Desmosomatidae (Crustacea: Isopoda: Asellota) from the deep sea of south-eastern Australia. Mem Mus Vict 63:175–205Google Scholar
  9. Brix S (2006b) A new species of Desmosomatidae (Isopoda: Crustacea) from the deep Southern Ocean: Eugerdella serrata sp. nov. including remarks to the morphological variability within Eugerdella Hessler, 1970. Mitteilungen aus dem hamburger zoologischen Museum und Institut:69–84Google Scholar
  10. Brix S (2007) Four new species of Desmosomatidae Sars, 1897 (Crustacea: Isopoda) from the deep sea of the Angola Basin. Mar Biol Res 3:205–230CrossRefGoogle Scholar
  11. Brix S, Bruce NL (2008) Prochelator tupuhi sp. nov., the first record of Desmosomatidae Sars, 1897 (Crustacea: Isopoda) from New Zealand waters. Zootaxa 1866:462–492Google Scholar
  12. Brix S, Svavarsson J (2010) Distribution and diversity of desmosomatid and nannoniscid isopods (Crustacea) on the Greenland–Iceland–Faeroe Ridge. Polar Biol 33:515–530CrossRefGoogle Scholar
  13. Brix S, Riehl T, Leese F (2011) First genetic data for species of the genus Haploniscus Richardson, 1908 (Isopoda: Asellota: Haploniscidae) from neighbouring deep-sea basins in the South Atlantic. Zootaxa 2838:79–84Google Scholar
  14. Brökeland W (2010a) Description of four new species from the Haploniscus unicornis Menzies, 1956 complex (Isopoda:Asellota: Haploniscidae). Zootaxa 2536:1–35Google Scholar
  15. Brökeland W (2010b) Redescription of Haploniscus rostratus (Menzies, 1962) (Crustacea: Peracarida: Isopoda) with observations on the postmarsupial development, size ranges and distribution. Zootaxa 2521:1–25Google Scholar
  16. Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552CrossRefPubMedGoogle Scholar
  17. Choudhury M (2009) Biodiversity and zoogeography of the Isopoda (Crustacea: Malacostraca) from the Victoria Land Coast, Ross Sea, Antarctica. Doktor dissertation, University of Hamburg, HamburgGoogle Scholar
  18. Choudhury M, Brandt A (2007) Composition and distribution of benthic isopod (Crustacea, Malacostraca) families off the Victoria-Land Coast (Ross Sea, Antarctica). Polar Biol 30:1431–1437CrossRefGoogle Scholar
  19. Crandall KA, Fitzpatrick JF (1996) Crayfish molecular systematics: using a combination of procedures to estimate phylogeny. Syst Biol 45:1–26CrossRefGoogle Scholar
  20. DeSalle R, Egan MG, Siddall M (2005) The unholy trinity: taxonomy, species delimitation and DNA barcoding. Philos Trans R Soc Lond B 360:1905–1916CrossRefGoogle Scholar
  21. Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A, Duran C, Field M, Heled J, Kearse M, Markowitz S, Moir R, Stones-Havas S, Sturrock S, Thierer T, Wilson A (2011) Geneious v.5.4, Available from
  22. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299PubMedGoogle Scholar
  23. Gage JD, Tyler PA (1992) Deep-sea biology: a natural history of organisms at the deep-sea floor. Cambridge University Press, CambridgeGoogle Scholar
  24. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321CrossRefPubMedGoogle Scholar
  25. Hansen HJ (1916) Crustacea Malacostraca: the order Isopoda. Dan Ingolf Exped 3:1–262Google Scholar
  26. Hebert PDN, Ratnasingham S, de Waard JR (2003) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc Lond B 270:S96–S99CrossRefGoogle Scholar
  27. Hessler RR (1970) The Desmosomatidae (Isopoda, Asellota) of the Gay Head-Bermuda transect. Bull Scripps Inst Oceanogr 15:1–185Google Scholar
  28. Hessler RR, Sanders HL (1967) Faunal diversity in the deep sea. Deep-Sea Res 14:65–78Google Scholar
  29. Huson DH (1998) SplitsTree: a program for analyzing and visualizing evolutionary data. Bioinformatics 14:68–73CrossRefPubMedGoogle Scholar
  30. Just J, Wilson GDF (2004) Revision of the Paramunna complex (Isopoda: Asellota: Paramunnidae). Invertebr Syst 18:377–466CrossRefGoogle Scholar
  31. Kaiser (2009) Nymphodora gen. nov., a new genus of Nannoniscidae Hansen, 1916 (Isopoda, Asellota) from the high Arctic. Zootaxa 2096:371–380Google Scholar
  32. Kaiser S, Barnes DKA (2008) Southern Ocean deep-sea biodiversity: sampling strategies and predicting responses to climate change. Clim Res 37:165–179CrossRefGoogle Scholar
  33. Kaiser S, Brix S (2005) A new isopod species from the Southern Ocean: Disparella maiuscula sp. nov. (Isopoda: Asellota: Desmosomatidae). Mitt Hamb Zool Mus Inst 102:153–165Google Scholar
  34. Kaiser S, Brix S (2007) Two new species of the genus Pseudomesus Hansen, 1916 (Isopoda, Asellota) from the Southern hemisphere: Pseudomesus pitombo sp. nov and Pseudomesus satanus sp. nov. Zootaxa 1658:21–38Google Scholar
  35. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066CrossRefPubMedCentralPubMedGoogle Scholar
  36. Kihara TC, Rocha C (2009) Técnicas para o estudo taxonomico de copépodes harpacticóides da meiofauna marinha. Asterisco, Porto AlegreGoogle Scholar
  37. Kröncke I, Reiss H, Türkay M (2013) Macro- and megafauna communities in three deep basins of the South-East Atlantic. Deep-Sea Res 1(81):25–35CrossRefGoogle Scholar
  38. Kussakin OG (1965) On the fauna of the Desmosomatidae (Crustacea, Isopoda) of the Far-Eastern seas of the USSR. Issledovanija dal’nevostocnya morej SSSR (Exploration of the Far-Eastern Seas of the USSR) 3:115–144Google Scholar
  39. Kussakin OG (1999) Marine and brackish-water Crustacea (Isopoda) of cold and temperate waters of the Northern Hemisphere. 3. Suborder Asellota 2. Families Joeropsididae, Nannoniscidae, Desmosomatidae, Macrostylidae. Opredeliteli po Faune. Akad Nauk 169:1–384Google Scholar
  40. Leese F, Agrawal S, Held C (2010) Long-distance island hopping without dispersal stages: transportation across major zoogeographic barriers in a Southern Ocean isopod. Naturwissenschaften 97(6):583–594. doi: 10.1007/s00114-010-0674-y CrossRefPubMedGoogle Scholar
  41. Malyutina MV, Kussakin OG (1996) Addition to the Polar Sea bathyal and abyssal Isopoda (Crustacea). Part 1. Anthuridea, Valvifera, Asellota (Ischnomesidae, Macrostylidae, Nannoniscidae). Zoosyst Ross 4:49–62Google Scholar
  42. Meier R, Shiyang K, Vaidya G, Ng PKL (2006) DNA barcoding and taxonomy in Diptera: a tale of high intraspecific variability and low identification success. Syst Biol 55:715–728CrossRefPubMedGoogle Scholar
  43. Menzel L, George KH, Martinez P (2011) Submarine ridges do not prevent large-scale dispersal o abyssal fauna: a case study of Mesocletodes (Crustacea, Copepoda, Harpacticoida). Deep Sea Res Part I 58:839–864CrossRefGoogle Scholar
  44. Menzies RJ (1962) Abyssal Crustacea. Columbia University Press, New YorkGoogle Scholar
  45. Menzies RJ, George RY (1972) Isopod Crustacea of the Peru-Chile Trench. Anton Bruun Rep 9:1–124Google Scholar
  46. Mezhov BV (1986) Bathyal and abyssal Nannoniscidae and Desmosomatidae (Isopoda, Asellota) from Alaska Bay. Arch Zool Mus Moscow State Univ 24(1986):126–167Google Scholar
  47. Michels J, Büntzow M (2010) Assessment of Congo red as a fluorescence marker for the exoskeleton of small crustaceans and the cuticle of polychaetes. J Micros 238:95–101CrossRefGoogle Scholar
  48. Mishler BD, Brandon RN (1987) Individuality, pluralism, and the phylogenetic species concept. Biol Philos 2(4):397–414CrossRefGoogle Scholar
  49. Osborn KJ (2009) Relationships within the Munnopsidae (Crustacea, Isopoda, Asellota) based on three genes. Zool Scr 38:617–635CrossRefGoogle Scholar
  50. Palumbi S, Martin A, Romano S, Stice L, Grabowski G (1991) The simple fool’s guide to PCR, version 2.0. Spec Pub University of Hawaii, Department of Zoology and Kewalo Marine LaboratoryGoogle Scholar
  51. Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256CrossRefPubMedGoogle Scholar
  52. Radulovici AE, Bernard S-M, Dufresne F (2009) DNA barcoding of marine crustaceans from the Estuary and Gulf of St Lawrence: a regional-scale approach. Mol Ecol Resour 9:181–187CrossRefPubMedGoogle Scholar
  53. Raupach MJ, Held C, Wägele J-W (2004) Multiple colonization of the deep sea by the Asellota (Crustacea: Peracarida: Isopoda). Deep Sea Res Part II 51:1787–1795CrossRefGoogle Scholar
  54. Reid J (1996) On the circulation of the South Atlantic Ocean. In: The South Atlantic: present and past circulation. Springer, Heidelberg, pp 13–44Google Scholar
  55. Rex M, Etter R (2010) Deep-sea biodiversity. Pattern and scale, 1st edn. Harvard University Press, LondonGoogle Scholar
  56. Riehl T, Brandt A (2010) Descriptions of two new species in the genus Macrostylis Sars, 1864 (Isopoda, Asellota, Macrostylidae) from the Weddell Sea (Southern Ocean), with a synonymisation of the genus Desmostylis Brandt, 1992 with Macrostylis. Zookeys 57:9–49CrossRefPubMedGoogle Scholar
  57. Riehl T, Brandt A (2013) Southern Ocean Macrostylidae reviewed with a key to the species and new descriptions from Maud Rise. Zootaxa 3692(1):160–203CrossRefGoogle Scholar
  58. Riehl T, Kaiser S (2012) Conquered from the deep sea? A new deep-sea isopod species from the Antarctic shelf shows pattern of recent colonization. PLoS ONE 7(11):e49354CrossRefPubMedCentralPubMedGoogle Scholar
  59. Riehl T, Wilson GD, Hessler RR (2012) New Macrostylidae Hansen, 1916 (Crustacea: Isopoda) rom the Gay Head-Bermuda transect with special consideration of sexual dimorphism. Zootaxa 3277:1–26Google Scholar
  60. Sanders HL, Hessler RR (1969) Ecology of the deep-sea benthos. Science (New York) 163:1419CrossRefGoogle Scholar
  61. Sanders HL, Hessler RR, Hampson GR (1965) An introduction to the study of deep-sea benthic faunal assemblages along the Gay Head-Bermuda transect. Deep Sea Res Oceanogr Abstr 12:845–867CrossRefGoogle Scholar
  62. Sars GO (1897) Isopoda. Part VII, VIII. Desmosomidae, munnopsidae. An account of the crustacea of Norway with short descriptions and figures of all the species, Oslo, 117–144Google Scholar
  63. Sauer J, Hausdorf B (2012) A comparison of DNA-based methods for delimiting species in a Cretan land snail radiation reveals shortcomings of exclusively molecular taxonomy. Cladistics 28:300–316CrossRefGoogle Scholar
  64. Schlitzer R et al (1985) A meridional 14C and 39Ar section in northeast Atlantic deep water. J Geophys Res 90:6945–6952CrossRefGoogle Scholar
  65. Schnurr S, Brix S (2012) Eugerdella huberti sp. nov.—a new species of Desmosomatidae Sars, 1897 (Crustacea, Isopoda) from the deep-sea of the South Atlantic Ocean. Mar Biodivers 42:13–24CrossRefGoogle Scholar
  66. Schwentner M, Timms BV, Richter S (2011) An integrative approach to species delineation incorporating different species concepts: a case study of Limnadopsis (Branchiopoda: Spinicaudata). Biol J Linn Soc 104(3):575–599CrossRefGoogle Scholar
  67. Svavarsson J (1984) Description of the male of Pseudomesus brevicornis Hansen, 1916 (Isopoda, Asellota, Desmosomatidae) and rejection of the family Pseudomesidae. Sarsia 69:37–44Google Scholar
  68. Svavarsson J (1988) Bathyal and abyssal Asellota (Crustacea, Isopoda) from the Norwegian, Greenland and North Polar Seas. Sarsia 73:83–106Google Scholar
  69. Svavarsson J, Stromberg JO, Brattegard T (1993) The deep-sea asellote (Isopoda, Crustacea) fauna of the Northern Seas: species composition, distributional patterns and origin. J Biogeogr 20:537–555CrossRefGoogle Scholar
  70. Vrijenhoek RC (2009) Cryptic species, phenotypic plasticity, and complex life histories: assessing deep-sea faunal diversity with molecular markers. Deep Sea Res Part II 56:1713–1723CrossRefGoogle Scholar
  71. Wägele JW (1989) Evolution und phylogenetisches System der Isopoda. Stand der Forschung und neue Erkenntnisse. Zoologica 140:1–262Google Scholar
  72. Wetzer R (2001) Hierarchical analysis of mtDNA variation and the use of mtDNA for isopod (Crustacea: Peracarida: Isopoda) systematics. Contrib Zool 70:23–39Google Scholar
  73. Wheeler QD, Platnick NI (2000) The phylogenetic species concept (sensu Wheeler and Platnick) Quentin D. Wheeler and Norman I. Platnick. Species concepts and phylogenetic theory: a debate, 55Google Scholar
  74. Will KW, Rubinoff D (2004) Myth of the molecule: DNA barcodes for species cannot replace morphology for identification and classification. Cladistics 20:47–55CrossRefGoogle Scholar
  75. Wilson GDF (2008a) Local and regional species diversity of benthic Isopoda (Crustacea) in the deep Gulf of Mexico. Deep-Sea Res II 55:2634–2649CrossRefGoogle Scholar
  76. Wilson GDF (2008b) A review of taxonomic concepts in the Nannoniscidae (Isopoda, Asellota), with a key to the genera and a description of Nannoniscus oblongus Sars. Zootaxa 1680:1–24Google Scholar
  77. Wilson GDF, Hessler RR (1987) Speciation in the deep sea. Annu Rev Ecol Syst 18:185–207CrossRefGoogle Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Saskia Brix
    • 1
  • Florian Leese
    • 2
  • Torben Riehl
    • 3
  • Terue Cristina Kihara
    • 4
  1. 1.Senckenberg am MeerGerman Centre for Marine Biodiversity Research (DZMB)HamburgGermany
  2. 2.Department of Animal Ecology, Evolution and BiodiversityRuhr University BochumBochumGermany
  3. 3.Biocenter Grindel, Zoological MuseumUniversity of HamburgHamburgGermany
  4. 4.Senckenberg am MeerGerman Centre for Marine Biodiversity Research (DZMB)WilhelmshavenGermany

Personalised recommendations