Marine Biodiversity

, Volume 44, Issue 4, pp 533–551 | Cite as

The diversity of seaweeds on maerl in the NE Atlantic

  • V. PeñaEmail author
  • I. Bárbara
  • J. Grall
  • C. A. Maggs
  • J. M. Hall-Spencer
Original Paper


Maerl beds worldwide face habitat destruction (e.g. from dredging, fishing gear and fish farms), the combined pressures of ocean warming and acidification, and the spread of invasive species. Maerl beds have high conservation status in European legislation, yet their associated flora is poorly known. Here, we evaluate the known macroalgal diversity of NE Atlantic maerl beds from Svalbard to Portugal. Maerl beds occur from the low intertidal down to 51 m in the clearest waters. To date, 349 macroalgal species have been recorded on maerl in the NE Atlantic (67 % are Rhodophyta), a remarkable 30 % of the total seaweed diversity in this region. Eleven non-native species have been recorded on Atlantic European maerl beds, the most widely distributed being phases of Bonnemaisonia hamifera (“Trailliella intricata”), Asparagopsis armata (“Falkenbergia rufolanosa”), Antithamnionella spirographidis and Heterosiphonia japonica. The flora of maerl beds off Iceland and Norway is poorly known, but maerl beds off Britain, Ireland, France and Spain have been surveyed extensively and support several species that are maerl specialists (i.e. Cruoria cruoriaeformis, Cladophora rhodolithicola, Gelidiella calcicola). Our observations of G. calcicola and Gelidium maggsiae are new records for Portugal. Maerl beds in the Algarve have many of the same macroalgal species as Mediterranean maerl beds, but they are not as floristically diverse as those in Galicia because they are confined to deeper water. Our census provides a baseline that can be used to assess changes to these habitats over the coming years.


NE Atlantic Biodiversity Maerl Macroalgae Invasive species 



This study was supported by the projects PGIDIT03PXIB10301PR (Xunta de Galicia) and CGL2006-03576/BOS (Ministerio de Educación y Ciencia, FEDER). V.P. acknowledges support by the postdoctoral programs Axudas de apoio á etapa inicial de formación posdoutoral do Plan I2C (Xunta de Galicia) and Programa Nacional de Movilidad de Recursos Humanos (Spain’s Ministerio de Economía y Competitividad), and by the Marie Curie fellowship (PHD20), EC-IHP ARI fellowship and Universidade da Coruña for maerl surveys and research stays in Iceland, Norway, UK and France (2003–2005). V.P. is grateful with Halldor Halldorsson, Alfonso Ramos Esplá, Vivian Husa, Gustavo Hinojosa and Ken Collins for help with sampling in Iceland, Norway, Northern Ireland and Britain. The map with OSPAR regions included in Fig. 1 was provided by the OSPAR Commission.


  1. Adey WH (1968) The distribution of crustose corallines on the Icelandic coast. Sci Islandica Anniversary Vol 1968:16–25Google Scholar
  2. Adey WH, McKibbin DL (1970) Studies on the maerl species Phymatolithon calcareum (Pallas) nov. comb. and Lithothamnium coralloides Crouan in the Ría de Vigo. Bot Mar 13(2):100–106CrossRefGoogle Scholar
  3. Afonso-Carrillo J, Gil-Rodríguez MC (1982) Sobre la presencia de un fondo de “Maerl” en las Islas Canarias. Collect Bot 13(2):703–708Google Scholar
  4. Araújo R, Bárbara I, Tibaldo M, Berecibar E, Díaz-Tapia P, Pereira R, Santos R, Sousa-Pinto I (2009) Checklist of benthic marine algal and cyanobacteria of northern Portugal. Bot Mar 52(1):24–46CrossRefGoogle Scholar
  5. Ballesteros E (1988) Composición y estructura de los fondos de maërl de Tossa de Mar (Gerona, España). Collect Bot 17(2):161–182CrossRefGoogle Scholar
  6. Bárbara I, Díaz-Tapia P (2012) New records and additions to the seaweeds of France. Mar Biodivers Rec 5:e75. doi: 10.1017/S1755267212000589 CrossRefGoogle Scholar
  7. Bárbara I, Cremades J, Veiga AJ (1996) An interesting community of Desmarestia dresnayi (Desmarestiales, Phaeophyta) in the lower sublittoral of the Arousa Island (NW Iberian Peninsula, Spain). 2nd Symposium Fauna and Flora of the Atlantic Islands :140Google Scholar
  8. Bárbara I, Cremades J, Veiga AJ (1999) Estudio estacional de la comunidad sublitoral de maerl en el noroeste peninsular. XIII Simposio de Botánica Criptogámica :71Google Scholar
  9. Bárbara I, Cremades J, Veiga AJ, López C, Dosil J, Calvo S, Peña V (2002) Fragmenta chorologica occidentalia, algae, 7814–7892. An Jard Bot Madrid 59(2):292–297Google Scholar
  10. Bárbara I, Cremades J, Veiga AJ (2004) Floristic study of a mäerl and gravel subtidal bed in the Ría de Arousa (Galicia, Spain). Bot Complut 28:27–37Google Scholar
  11. Bárbara I, Cremades J, Calvo S, López-Rodríguez MC, Dosil C (2005) Checklist of the benthic marine and brackish Galician algae (NW Spain). An Jard Bot Madrid 62(1):69–100Google Scholar
  12. Bárbara I, Lee S-Y, Peña V, Díaz P, Cremades J, Oak JH, Choi H-G (2008) Chrysymenia wrightii (Rhodymeniales, Rhodophyta)—a new non-native species for the European Atlantic coast. Aquat Invasions 3(4):367–375CrossRefGoogle Scholar
  13. Bárbara I, Díaz-Tapia P, Peteiro C, Berecibar E, Peña V, Sánchez N, Tavares MF, Santos R, Secilla A, Riera P, Bermejo R, García V (2012) Nuevas citas y aportaciones corológicas para la flora bentónica marina del atlántico de la península Ibérica. Acta Bot Malac 37:5–32Google Scholar
  14. Bárbara I, Gallardo T, Cremades J, Barreiro R, Maneiro I, Saunders GW (2013a) Pseudopolyides furcellarioides gen. et sp. nov. (Gigartinales, Rhodophyta) an erect member of the Cruoriaceae based on morphological and molecular evidence. Phycologia 52(2):191–203CrossRefGoogle Scholar
  15. Bárbara I, Choi H-G, Secilla A, Díaz P, Gorostiaga JM, Seo T-K, Jung M-Y, Berecibar E (2013b) Lampisiphonia iberica gen. et sp. nov. (Ceramiales, Rhodophyta) based on morphology and molecular evidence. Phycologia 53(2):137–155CrossRefGoogle Scholar
  16. Barberá C, Bordehore C, Borg JA, Glémarec M, Grall J, Hall-Spencer JM, De La Huz C, Lanfranco E, Lastra M, Moore PG, Mora J, Pita ME, Ramos-Esplá AA, Rizzo R, Sánchez-Mata A, Seva A, Schembri PJ, Valle C (2003) Conservation and management of northeast Atlantic and Mediterranean maerl beds. Aquat Conserv Mar Freshw Ecosyst 13:S65–S76CrossRefGoogle Scholar
  17. Berecibar E (2011) Long-term changes in the phytogeography of the Portuguese continental coast. Doctoral thesis, Universidade do AlgarveGoogle Scholar
  18. BIOMAERL Team (1999) Final report, BIOMAERL project. University Marine Biological Station. Isle of CumbraeGoogle Scholar
  19. Birkett DA, Maggs CA, Dring MJ (1998a) Maerl. An overview of dynamics and sensitivity characteristics for conservation management of marine SACs. Scott Assoc Mar Sci (UK Marine SACs Project)Google Scholar
  20. Birkett DA, Maggs CA, Dring MJ, Boaden PJS (1998b) Infralittoral reef biotopes with kelp species. An overview of dynamic and sensitivity characteristics for conservation management of marine SACs. Scott Assoc Mar Sci (UK Marine SACs Project)Google Scholar
  21. Blake C, Maggs CA (2003) Comparative growth rates and internal banding periodicity of maerl species (Corallinales, Rhodophyta) from northern Europe. Phycologia 42(6):606–612CrossRefGoogle Scholar
  22. Blunden G, Farnham WF, Jephson N, Fenn RH, Plunkett BA (1977) The composition of maerl from the Glenan Islands of Southern Brittany. Bot Mar 20(2):121–125CrossRefGoogle Scholar
  23. Blunden G, Farnham WF, Jephson N, Barwell CJ, Fenn RH, Plunkett BA (1981) The composition of maerl beds of economic interest in Northern Brittany, Cornwall and Ireland. Xth International Seaweed Symp 10:651–656Google Scholar
  24. Bosence DW (1976) Ecological studies on two unattached coralline algae from western Ireland. Palaeontology 19(2):365–395Google Scholar
  25. Bosence DW, Wilson J (2003) Maerl growth, carbonate production rates and accumulation rates in the Northeast Atlantic. Aquat Conserv Mar Freshw Ecosyst 13:S21–S31CrossRefGoogle Scholar
  26. Büdenbender J, Riebesell U, Form A (2011) Calcification of the Arctic coralline red algae Lithothamnion glaciale in response to elevated CO2. Mar Ecol Prog Ser 441:79–87CrossRefGoogle Scholar
  27. Bunker FSPD (2011) Monitoring of a Maerl Bed in the Milford Haven waterway, Pembrokeshire, 2010. Countryside Council for Wales, WalesGoogle Scholar
  28. Cabioch J (1969) Les fonds de maerl de la Baie de Morlaix et leur peuplement végétal. Cah Biol Mar 10:139–161Google Scholar
  29. Cabioch J (1974) Un fond de maerl de l’Archipel de Madère et son peuplement végétal. Bull Soc Phycol Fr 19:74–82Google Scholar
  30. Cires-Rodríguez E, Cuesta-Moliner C (2010) Checklist of benthic algae from the Asturias Coasts (North of Spain). Bol Cien Nat RIDEA 51:135–212Google Scholar
  31. Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199:1302–1310PubMedCrossRefGoogle Scholar
  32. Cotton AD (1912) Clare island survey. 15.-Marine algae. Proc R Ir Acad 31:1–178Google Scholar
  33. Davison DM, Hughes DJ (1998) Zostera biotopes. An overview of dynamic and sensitivity characteristics for conservation and management of marine SACs. Scott Assoc Mar Sci (UK Marine SACs Project)Google Scholar
  34. De Grave S, Whitaker A (1999) A census of maerl beds in Irish waters. Aquat Conserv Mar Freshw Ecosyst 9:303–311CrossRefGoogle Scholar
  35. De Grave S, Fazakerley H, Kelly L, Guiry MD, Ryan M, Walshe J (2000) A study of selected maërl beds in Irish waters and their potential for sustainable extraction. Mar Res Ser 10:1–44Google Scholar
  36. Destombe C, Valero M, Guillemin ML (2010) Delineation of two sibling red algal species, Gracilaria gracilis and Gracilaria dura (Gracilariales, Rhodophyta), using multiple DNA markers: resurrection of the species G. dura previously described in the Northern Atlantic 200 years ago. J Phycol 46:720–727CrossRefGoogle Scholar
  37. Díaz Pulido G, Anthony KRN, Kline DI, Dove S, Hoegh-Guldberg O (2012) Interactions between ocean acidification and warming on the mortality and dissolution of coralline algae. J Phycol 48:32–39CrossRefGoogle Scholar
  38. Díaz-Tapia P, Bárbara I, Berecibar E (2013a) Vegetative and reproductive morphology of Polysiphonia tripinnata (Rhodomelaceae, Rhodophyta): a new record from the European Atlantic coast. Bot Mar 56(2):151–160CrossRefGoogle Scholar
  39. Díaz-Tapia P, Kim MS, Secilla A, Bárbara I, Cremades J (2013b) Taxonomic reassessment of Polysiphonia foetidissima (Rhodomelaceae, Rhodophyta) and similar species, including P. schneideri, a new introduced species in Europe. Eur J Phycol 48(4):345–362CrossRefGoogle Scholar
  40. Dizerbo AH, Herpe E (2007) Liste et répartition des algues marines des côtes françaises de la Manche et de l’Atlantique, Iles Anglo-Normandes incluses. Editions Scientifiques Anaximandre, LanderneauGoogle Scholar
  41. Donze M (1968) The algal vegetation of the Ría de Arosa (NW. Spain). Blumea 16:159–192Google Scholar
  42. Farnham WF, Jephson NA (1977) A survey of the maerl beds of Falmouth (Cornwall). Br Phycol J 12:119Google Scholar
  43. Foslie M (1894 [1895]) The Norwegian forms of Lithothamnion. K Nor Vidensk Selsk Skr 1894:29–208Google Scholar
  44. Fredericq S, Arakaki N, Camacho O, Gabriel D, Krayesky D, Self-Krayeski S, Rees G, Richards J, Sauvage T, Venera-Ponton D, Schmidt WE (2014) A dynamic approach to the study of rhodoliths: a case study for the northwestern Gulf of Mexico. Cryptogam Alg 35:77–98Google Scholar
  45. Gorostiaga JM, Santolaria A, Secilla A, Casares C, Díez I (2004) Check-list of the Basque coast benthic algae (North of Spain). An Jard Bot Madrid 61(2):155–180Google Scholar
  46. Grall J, Hall-Spencer JM (2003) Problems facing maerl conservation in Brittany. Aquat Conserv Mar Freshw Ecosyst 13:55–64CrossRefGoogle Scholar
  47. Guiry MD (2012) A catalogue of Irish seaweeds. Koeltz Scientific Books, KoenigsteinGoogle Scholar
  48. Guiry MD, Guiry GM (2013) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. Accessed 2 July 2013
  49. Gunnarsson K (1977) Dörungar á kóralsetlögum í Arnarfirdi. Hafrannsóknir 10:1–10Google Scholar
  50. Gunnarsson K, Jonsson S (2002) Benthic marine algae of Iceland: revised checklist. Cryptogam Algol 23:131–158Google Scholar
  51. Hall-Spencer JM (1998) Conservation issues relating to maerl beds as habitats for molluscs. J Conchol 2:271–286Google Scholar
  52. Hall-Spencer JM, Atkinson RJA (1999) Upogebia deltaura (Leach) (Crustacea, Thalassinidea) on maerl bed habitats in the Firth of Clyde. J Mar Biol Assoc UK 79:871–880CrossRefGoogle Scholar
  53. Hall-Spencer JM, White N, Gillespie E, Gilham K, Foggo A (2006) Impact of fish farms on maerl beds in strongly tidal areas. Mar Ecol Prog Ser 326:1–9CrossRefGoogle Scholar
  54. Hall-Spencer JM, Kelly J, Maggs CA (2010) Background document for maërl beds. OSPAR Biodivers Ser 491(2010):1–36Google Scholar
  55. Hamel G (1928) Les algues de Vigo. Rev Algol 4:81–95Google Scholar
  56. Hardy G, Guiry MD (2003) A check-list and Atlas of the seaweeds of Britain and Ireland. British Phycological Society, GalwayGoogle Scholar
  57. Hily C, Potin P, Floch JY (1992) Structure of subtidal algal assemblages on soft-bottom sediments: fauna/flora interactions and role of disburbances in the Bay of Brest, France. Mar Ecol Prog Ser 85:115–130CrossRefGoogle Scholar
  58. Hinojosa G, Maggs CA, Johnson MP (2009) Like a rolling stone: the mobility of maerl (Corallinaceae) and the neutrality of the associated assemblages. Ecology 90(2):517–528CrossRefGoogle Scholar
  59. Husa V, Sjötun K, Lein TE (2004) The newly introduced species Heterosiphonia japonica Yendo (Dasyaceae, Rhodophyta): geographical distribution and abundance at the Norwegian southwest coast. Sarsia 89:211–217CrossRefGoogle Scholar
  60. Irvine LM, Chamberlain YM (1994) Seaweeds of the British Isles. Volume 1. Rhodophyta, Part 2B Corallinales, Hildenbrandiales. Natural History Museum, LondonGoogle Scholar
  61. Jacquotte R (1962) Étude des fonds de maerl de Méditerranée. Rec Trav Stat Mar End 26:141–235Google Scholar
  62. Leliaert F, Boedeker C, Peña V, Bunker F, Verbruggen H, De Clerck O (2009) Cladophora rhodolithicola sp. nov. (Cladophorales, Chlorophyta), a diminutive species from European maerl beds. Eur J Phycol 44(2):155–169CrossRefGoogle Scholar
  63. Lemoine MP (1910) Répartition et mode de vie du Maerl (Lithothamnium calcareum) aux environs de Concarneau (Finistére). Ann Inst Oceanogr 1(3):27Google Scholar
  64. L’Hardy-Halos MT, Castric-Fey A, Girard-Descatoire A, Lafargue F (1973) Recherches en scaphandre autonome sur le peuplement végétal du substrat rocheux: l’Archipel de Glénan. Bull Soc Sci Bretagne 48:103–128Google Scholar
  65. Maggs CA (1983) Seasonal study of seaweed communities on subtidal maerl (unattached coralline algae) in Galway Bay, Ireland. Prog Underw Sci 9:27–40Google Scholar
  66. Maggs CA, Guiry MD (1987) Gelidiella calcicola sp. nov (Rhodophyta) from the British Isles and Northern France. Br Phycol J 22(4):417–434CrossRefGoogle Scholar
  67. Maggs CA, Guiry MD (1989) A re-evaluation of the crustose red algal genus Cruoria and the family Cruoriaceae. Br Phycol J 24(3):253–269CrossRefGoogle Scholar
  68. Maggs CA, Irvine LM (1983) Peyssonnelia immersa sp. nov. (Cryptonemiales, Rhodophyta) from the British Isles and France, with a survey of infrageneric classification. Br Phycol J 18(3):219–238CrossRefGoogle Scholar
  69. Maggs CA, Guiry MD, Irvine LM (1983) The life history in culture of an isolate of Rhododiscus pulcherrimus (Naccariaceae, Rhodophyta) from Ireland. Br Phycol J 18:206CrossRefGoogle Scholar
  70. Martin S, Clavier J, Guarini JM, Chauvaud L, Hily C, Grall J, Thouzeau G, Jean F, Richard J (2005) Comparison of Zostera marina and maerl community metabolism. Aquat Bot 83:161–174CrossRefGoogle Scholar
  71. Miranda F (1934) Materiales para una flora marina de las rías bajas gallegas. Bol R Soc Esp Hist Nat Sec Biol 34:165–180Google Scholar
  72. Miranda F (1936) Nuevas localidades de algas de las costas septentrionales y occidentales de España y otras contribuciones ficológicas. Bol R Soc Esp Hist Nat Sec Biol 36:367–381Google Scholar
  73. Nelson WA (2009) Calcified macroalgae—critical to coastal ecosystems and vulnerable to change: a review. Mar Freshw Res 60:787–801CrossRefGoogle Scholar
  74. Niell FX (1970) Adiciones a la flora de algas bentónicas de la ría de Vigo. Inv Pesq 34(2):299–308Google Scholar
  75. Noisette F, Duong G, Six C, Davoult D, Martin S (2013) Effects of elevated pCO2 on the metabolism of a temperate rhodolith Lithothamnion corallioides grown under different temperatures. J Phycol 49(4):746–757CrossRefGoogle Scholar
  76. Otero-Schmitt J (1993) Estudio de las fitocenosis bentónicas litorales en el tramo de costa comprendido entre Pta. Louro y Pta. Remedios (La Coruña-España). Tesis doctoral, Universidad de Santiago de CompostelaGoogle Scholar
  77. Otero-Schmitt J, Pérez-Cirera JL (2002) Infralittoral benthic biocenoses from northern Ría de Muros, Atlantic coast of northwest Spain. Bot Mar 45:93–122CrossRefGoogle Scholar
  78. Pascelli C, Riul P, Riosmena-Rodriguez SF, Nunes M, Hall-Spencer JM, Cabral de Oliveira E, Horta P (2013) Seasonal and depth-driven changes in rhodolith bed structure and associated macroalgae off Arvoredo island (southeastern Brazil). Aquat Bot 111:62–65CrossRefGoogle Scholar
  79. Peña V (2010) Estudio ficológico de los fondos de maerl y cascajo en el noroeste de la Península Ibérica. Tesis doctoral, Universidade da Coruña.
  80. Peña V, Bárbara I (2006) Revision of the genus Dasya (Ceramiales, Rhodophyta) in Galicia (NW Spain) and the addition of a new alien species Dasya sessilis Yamada for the European coasts. An Jard Bot Madrid 63(1):13–26Google Scholar
  81. Peña V, Bárbara I (2008a) Maerl community in the north-western Iberian peninsula: a review of floristic studies and long-term changes. Aquat Conserv Mar Freshw Ecosyst 18:339–366CrossRefGoogle Scholar
  82. Peña V, Bárbara I (2008b) Biological importance of an Atlantic maerl bed off Benencia Island (northwest Iberian Peninsula). Bot Mar 51(6):493–505CrossRefGoogle Scholar
  83. Peña V, Bárbara I (2009) Distribution of the Galician maerl beds and their shape classes (Atlantic Iberian Peninsula): proposal of areas in future conservation actions. Cah Biol Mar 50(4):353–368Google Scholar
  84. Peña V, Bárbara I (2010a) New records of crustose seaweeds associated with subtidal maerl beds and gravel bottoms in Galicia (NW Spain). Bot Mar 53(1):41–61CrossRefGoogle Scholar
  85. Peña V, Bárbara I (2010b) Seasonal patterns in the maerl community: case study of shallow subtidal European Atlantic beds. Eur J Phycol 45(3):327–342CrossRefGoogle Scholar
  86. Peña V, Bárbara I (2013) Non-coralline crustose algae associated with maërl beds in Portugal: a re-appraisal of their diversity of the Atlantic Iberian beds. Bot Mar 56(5–6):481–493Google Scholar
  87. Peña V, Bárbara I, Berecibar E, Santos R (2009) Present distribution of maerl beds in the Atlantic Iberian Peninsula. Mus Sci Nat 6th Regional Symposium IFAA :46Google Scholar
  88. Peña V, Adey WH, Riosmena-Rodríguez R, Jung M-Y, Choi H-G, Afonso-Carrillo J, Bárbara I (2011) Mesophyllum sphaericum sp. nov (Corallinales, Rhodophyta): a new maërl-forming species from the northeast Atlantic. J Phycol 47:911–927CrossRefGoogle Scholar
  89. Porzio L, Buia MC, Hall-Spencer JM (2011) Effects of ocean acidification on macroalgal communities. J Exp Mar Biol Ecol 400:278–287CrossRefGoogle Scholar
  90. Rico JM, Guiry MD (1997) Life history and reproduction of Gelidium maggsiae sp. nov. (Rhodophyta, Gelidiales) from Ireland. Eur J Phycol 32(3):267–279CrossRefGoogle Scholar
  91. Sauriau P-G, Curti C, Jourde J, Aubert F, Cajeri P, Lavesque N, Dubois S, Lepareur F, Gouesbier C, Sauriau F, Sauriau M, Latry L, Leguay D, Robert S, Pineau P, Geairon P (2012) Le maerl algues corallinacees marines dans les Pertuis Charentais. Ann Soc Sci Nat Charente Marit 10(3):281–300Google Scholar
  92. Secilla A (2012) La familia Ceramiaceae sensu lato en la costa de Bizkaia. Guineana 18:1–369Google Scholar
  93. Seoane-Camba J (1960) Comunidades algales de la ría de Vigo. Bol R Soc Esp Hist Nat Sec Biol 58(1):371–374Google Scholar
  94. Seoane-Camba J, Campo Sancho J (1968) Resultados de una primera exploración algológica con escafandra autónoma en la Ría de Vigo. Publ Técn Junta Estud Pesca 7:333–344Google Scholar
  95. Sjøtun K, Husa V, Peña V (2008) Present distribution and possible vectors of introductions of the alga Heterosiphonia japonica (Ceramiales, Rhodophyta) in Europe. Aquat Invasions 3(4):377–394CrossRefGoogle Scholar
  96. Sneli JA (1968) The Lithothamnion community in Nord-Möre, Norway with notes on the epifauna of Desmarestia viridis (Müller). Sarsia 31:69–74Google Scholar
  97. Suneson S (1958) Lithothamnion calcareum vid svenska västkusten. Bot Notiser 111:197–199Google Scholar
  98. Teichert S, Woelkerling W, Rüggeberg A, Wisshak M, Piepenburg D, Meyerhöfer M, Form A, Büdenbender J, Freiwald A (2012) Rhodolith beds (Corallinales, Rhodophyta) and their physical and biological environment at 80º 31′N in Nordkappbukta (Nordaustlandet, Svalbard Archipelago, Norway). Phycologia 51(4):371–390CrossRefGoogle Scholar
  99. Tittley I (2002) Seaweed diversity in the North Atlantic Ocean. Arquipélago Life Mar Sci 19A:13–25Google Scholar
  100. Tronholm A, Steen F, Tyberghein L, Leliaert F, Verbruggen H, Ribera MA, De Clerck O (2010) Species delimitation, taxonomy, and biogeography of Dictyota in Europe (Dyctiotales, Phaeophyceae). J Phycol 46:1301–1321CrossRefGoogle Scholar
  101. Valenzuela S (2001) Catálogo de las algas recogidas por F. Miranda en la Ría de Pontevedra (NO de España). NACC (Biol) 11:5–39Google Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • V. Peña
    • 1
    • 2
    • 3
    Email author
  • I. Bárbara
    • 1
  • J. Grall
    • 4
  • C. A. Maggs
    • 5
  • J. M. Hall-Spencer
    • 6
  1. 1.Grupo de Investigación BIOCOSTUniversity of A CoruñaA CoruñaSpain
  2. 2.Phycology Research GroupGhent UniversityGhentBelgium
  3. 3.UMR 7205 ISYEB CNRS, MNHN, UPMC, EPHE, Equipe Exploration, Espèces et Evolution, Muséum National d’Histoire NaturelleParisFrance
  4. 4.Séries Faune-Flore Observatoire Marin, UMS3113, Institut Universitaire Européen de la MerUniversité de Bretagne OccidentaleBrestFrance
  5. 5.School of Biological Sciences, Medical Biology CentreQueen’s University BelfastBelfastUK
  6. 6.Marine Biology and Ecology Research CentrePlymouth UniversityPlymouthUK

Personalised recommendations