Marine Biodiversity

, Volume 43, Issue 4, pp 279–291 | Cite as

A taxonomic survey of Saudi Arabian Red Sea octocorals (Cnidaria: Alcyonacea)

  • Roxanne D. Haverkort-Yeh
  • Catherine S. McFadden
  • Yehuda Benayahu
  • Michael Berumen
  • Anna Halász
  • Robert J. Toonen
Original Paper


A preliminary survey of Saudi Arabian Alcyonacea is presented, which combines classical taxonomy, multilocus molecular barcodes, and in situ photographs. We explored 14 locations along the west coast of the Kingdom of Saudi Arabia to assess the regional taxonomic diversity of non-gorgonian alcyonaceans. We collected samples from a total of 74 colonies, distributed among four families: 18 colonies of Alcyoniidae, 14 of Nephtheidae, 9 of Tubiporidae, and 33 of Xeniidae. We sequenced the octocorals using multiple nuclear [ribosomal Internal Transcribed Spacers (ITS) and ATP Synthetase Subunit α (ATPSα)] and mitochondrial [MutS homolog (mtMutS) and Cytochrome C Oxidase subunit one (COI)] loci, providing molecular barcodes which will: (1) allow direct comparison of biodiversity from this location to others for which molecular data are available, and (2) facilitate future identifications of these taxa. Finally, this preliminary phylogeny of sampled taxa provides insights on the resolution of mitochondrial versus nuclear loci, and highlights octocoral taxa that require further taxonomic attention.


Octocorallia Systematics Phylogenetics Taxonomy Red Sea 



Support for this project came from the Binational Science Foundation #2008186 to Y.B., C.S.M. and R.J.T. and the National Science Foundation (NSF) OCE-0623699 to R.J.T. Fieldwork was funded in part by NSF grant OCE-0929031 to B.W. Bowen, NSF OCE-0623699 (R.J.T.), and the King Abdullah University of Science and Technology (KAUST) Red Sea Research Center (M.L.B.) We thank J. DiBattista, the KAUST Reef Ecology Lab, and Coastal and Marine Resources Core Lab for logistic assistance. Also, we thank members of the ToBo laboratory at the Hawai’i Institute of Marine Biology, especially Zac Forsman, for guidance and advice with laboratory work and analyses, S. Hou and A. G. Young for assistance with sequencing nuclear genes, and A. Lee for assistance with sequencing the mitochondrial genes. This work was completed in partial fulfillment of the requirements for a Masters of Science degree at the University of Hawai’i at Manoa, and benefited from support and guidance of B.W. Bowen and D. Rubinoff.

Supplementary material

12526_2013_157_MOESM1_ESM.doc (146 kb)
Electronic Supplementary Material Table 1 (DOC 145 kb)


  1. Benayahu Y (1985) Faunistic composition and patterns in the distribution of soft corals (Octocorallia: Alcyonacea) along the coral reefs of Sinai Peninsula. Proc 5th Int Coral Reef Congr 6:255–260Google Scholar
  2. Benayahu Y (1993) Corals of the south-west Indian Ocean. I. Alcyonacea from Sodwana Bay, South Africa. Invest Rep Oceanogr Res Inst 67:1–16Google Scholar
  3. Benayahu Y (1995) Species composition of soft corals (Octocorallia: Alcyonacea) on the coral reefs of Sesoko Island, Ryukyu Archipelago, Japan. Galaxea 12:103–124Google Scholar
  4. Benayahu Y (2002) Soft corals (Octocorallia: Alcyonacea) of the southern Ryukyu Archipelago: The families Tubiporidae, Clavulariidae, Alcyoniidae and Briareidae. Galaxea J Coral Reef Stud 4:1–21Google Scholar
  5. Benayahu Y, Loya Y (1981) Competition for space among coral reef sessile organisms at Eilat, Red Sea. Bull Mar Sci 31:514–522Google Scholar
  6. Benayahu Y, Achituv Y, Berner T (1989) Metamorphosis of an octocoral primary polyp and its infection by algal symbiosis. Symbiosis 7:159–169Google Scholar
  7. Benayahu Y, Yosief T, Schleyer MH (2002) Soft corals (Octocorallia, Alcyonacea) of the southern Red Sea. Isr J Zool 48:273–283CrossRefGoogle Scholar
  8. Berntson EA, Bayer FM, McArthur AG, France SC (2001) Phylogenetic relationships within the Octocorallia (Cnidaria: Anthozoa) based on nuclear 18S rRNA sequences. Mar Biol 138:235–246CrossRefGoogle Scholar
  9. Brockman SA, McFadden CS (2012) The mitochondrial genome of Paraminabea aldersladei (Cnidaria: Anthozoa: Octocorallia) supports intramolecular recombination as the primary mechanism of gene rearrangement in octocoral mitochondrial genomes. Genome Biol Evol 4:882–894CrossRefGoogle Scholar
  10. Brody JR, Scott EK (2004) History and principles of conductive media for standard DNA electrophoresis. Anal Biochem 333:1–13PubMedCrossRefGoogle Scholar
  11. Concepcion GT, Medina M, Toonen RJ (2006) Noncoding mitochondrial loci for corals. Mol Ecol Notes 6:1208–1211CrossRefGoogle Scholar
  12. Concepcion GT, Crepeau MW, Wagner D, Kahng SE, Toonen RJ (2008) An alternative to ITS, a hypervariable, single copy nuclear intron in corals, and ITS use in detecting cryptic species within the octocoral genus Carijoa. Coral Reefs 27:323–336CrossRefGoogle Scholar
  13. Daly M, Brugler MR, Cartwright P, Collins AG, Dawson MN, Fautin DG, France SC, McFadden CS, Opresko DM, Rodriguez E, Romano SL, Stake JL (2007) The phylum Cnidaria: a review of phylogenetic patterns and diversity 300 years after Linnaeus. Zootaxa 1668:127–182Google Scholar
  14. De’ath G, Moran PJ (1998) Factors affecting the behaviour of crown-of-thorns starfish (Acanthaster planci L.) on the Great Barrier Reef. 2: Feeding preferences. J Exp Mar Biol Ecol 220:107–126CrossRefGoogle Scholar
  15. Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A, Heled J, Kearse M, Moir R, Stones-Havas S, Sturrock S, Thierer T, Wilson A (2010) Geneious v5.1. ​
  16. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:792–1797Google Scholar
  17. Ehrenberg CG (1834) Beiträge zur Kenntnis der Corallenthiere im allgemeinen, und besonderen des Rothen Meeres, nebst einem Versuche zur physiologischen Systematik derselben. Abh Königlichen Akad Wiss Berl 1:225–380Google Scholar
  18. Fabricius K (1995) Slow population turnover in the soft coral genera Sinularia and Sarcophyton on mid- and outer-shelf reefs of the Great Barrier Reef. Mar Ecol Prog Ser 126:145–152CrossRefGoogle Scholar
  19. Fabricius KE (1997) Soft coral abundance on the central Great Barrier Reef: effects of Acanthaster planci, space availability, and aspects of the environment. Coral Reefs 16:159–167CrossRefGoogle Scholar
  20. Fabricius KE, Alderslade P (2001) Soft corals and sea fans: a comprehensive guide to the tropical shallow water genera of the central-west Pacific, the Indian Ocean and the Red Sea. Australian Institute of Marine Science, TownsvilleGoogle Scholar
  21. Gaither MR, Szabó Z, Crepeau MW, Bird CE, Toonen RJ (2011) Preservation of corals in salt-saturated DMSO buffer is superior to ethanol for PCR experiments. Coral Reefs 30:329–333CrossRefGoogle Scholar
  22. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704PubMedCrossRefGoogle Scholar
  23. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomex E, Harvell CD, Sale PF, Edwsrds AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742PubMedCrossRefGoogle Scholar
  24. Hoeksema BW, Koh EGL (2009) Depauperation of the mushroom coral fauna (Fungiidae) of Singapore (1860s–2006) in changing reef conditions. Raffles Bull Zool Suppl 22:91–101Google Scholar
  25. Huelsenbeck JP, Ronquist F (2001) MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755PubMedCrossRefGoogle Scholar
  26. Hughes T, Baird AH, Bellwood DR, Card M, Conolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JBC, Kleypas J, Lough JM, Marshall P, Nyström M, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301:929–933PubMedCrossRefGoogle Scholar
  27. Jarman SN, Ward RD, Elliott NG (2002) Oligonucleotide primers for PCR amplification of coelomate introns. Mar Biotechnol 4:347–355PubMedCrossRefGoogle Scholar
  28. Kahng SE, Benayahu Y, Lasker HR (2011) Sexual reproduction in octocorals. Mar Ecol Prog Ser 443:265–283CrossRefGoogle Scholar
  29. Klunzinger CB (1877) Die Korallenthiere des Rothen Meeres. I: Die Alcyonarien und Malacodermen. Gutmann’schen, BerlinGoogle Scholar
  30. Kükenthal W (1913) Alcyonrien des Roten Meeres. In: Expeditionen S.M. Schiff “Pola” in das Rote Meer. Zool Ergeb 29:1–32Google Scholar
  31. Lamarck JBPA (1816) Polypes tubiferes. In Histoire naturelle des animeaux sans vertebres. Verdiere, ParisGoogle Scholar
  32. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948Google Scholar
  33. Librado P, Rozas J (2009) DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452PubMedCrossRefGoogle Scholar
  34. Loya Y, Sakai K, Nakano Y, Van Woesik R (2001) Coral bleaching: the winners and the losers. Ecol Lett 4:122–131CrossRefGoogle Scholar
  35. Markmann M, Tautz D (2005) Reverse taxonomy: an approach towards determining the diversity of meiobenthic organisms based on ribosomal RNA signature sequences. Philos Trans R Soc Lond B 360:1917–1924CrossRefGoogle Scholar
  36. McFadden CS, Hochberg FG (2003) Biology and taxonomy of encrusting alcyoniid soft corals in the Northeastern Pacific Ocean with descriptions of two new genera (Coelenterata: Anthozoa: Octocorallia). Invertebr Biol 122:93–113CrossRefGoogle Scholar
  37. McFadden CS, France SC, Sánchez JA, Alderslade P (2006a) A molecular phylogenetic analysis of the Octocorallia (Cnidaria: Anthozoa) based on mitochondrial protein-coding sequences. Mol Phylogenet Evol 41:513–527PubMedCrossRefGoogle Scholar
  38. McFadden CS, Alderslade P, van Ofwegen LP, Johnsen H, Rusmevichientong A (2006b) Phylogenetic relationships within the tropical soft coral genera Sarcophyton and Lobophytum (Anthozoa, Octocorallia). Invertebr Biol 125:288–305CrossRefGoogle Scholar
  39. McFadden CS, Van Ofwegen LP, Beckman EJ, Benayahu Y, Alderslade P (2009) Molecular systematics of the speciose Indo-Pacific soft coral genus, Sinularia (Anthozoa: Octocorallia). Invertebr Biol 128:303–323CrossRefGoogle Scholar
  40. McFadden CS, Sánchez JA, France SC (2010) Molecular phylogenetic insights into the evolution of octocorallia: a review. Integr Comp Biol 50:389–410PubMedCrossRefGoogle Scholar
  41. McFadden CS, Benayahu Y, Pante E, Thoma JN, Nevarez PA, France SC (2011) Limitations of mitochondrial gene barcoding in Octocorallia. Mol Ecol Resour 11:19–31PubMedCrossRefGoogle Scholar
  42. Migné A, Davoult D (1997) Ammonium excretion in two benthic cnidarians: Alcyonium digitatum (Linnaeus, 1758) and Urticina felina (Linnaeus, 1767). J Sea Res 37:101–107CrossRefGoogle Scholar
  43. Munro C (2005) Diving systems. In: McIntyre EA (ed) Methods for the study of marine benthos, 3rd edn. Blackwell, Oxford, pp 112–119CrossRefGoogle Scholar
  44. Reinicke G (1997) Xeniidae (Coelenterata: Octocorallia) of the Red Sea, with descriptions of six new species of Xenia. Fauna Saudi Arab 16:5–62Google Scholar
  45. Ros JD, Romero J, Ballesteros E, Gili JM (1985) Diving in the blue water. The benthos. In: Key Environment: Western Mediterranean, 1st edn. Pergamon, Oxford, pp 233295Google Scholar
  46. Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386PubMedGoogle Scholar
  47. Salem M (1999) Management of fishing in the Ras Mohammed National Park with special reference to the fishery for Lethrinus nebulosus (Forskal, 1775). Dissertation, University of York, YorkGoogle Scholar
  48. Sheppard CRC (1985) Reefs and coral assemblages of Saudi Arabia. 2. Fringing reefs in the southern region, Jeddah to Jizan. Fauna Saudi Arab 7:37–58Google Scholar
  49. Sheppard CRC, Sheppard ALS (1985) Reefs and coral assemblages of Saudi Arabia. 1. The Central Red Sea at Yanbu al Sinaiyah. Fauna Saudi Arab 7:17–36Google Scholar
  50. Sheppard CRC, Sheppard ALS (1991) Corals and Coral Communities of Arabia. Fauna Saudi Arab 12:3–170Google Scholar
  51. Shorthouse DP (2010) SimpleMappr, an online tool to produce publication-quality point maps. Accessed 27 March 2013
  52. Slattery M, McClintock JB, Heine JN (1995) Chemical defenses in Antarctic soft corals: Evidence for antifouling compounds. J Exp Mar Biol Ecol 190:61–77CrossRefGoogle Scholar
  53. Stemmer K, Burghardt I, Mayer C, Reinicke GB, Wägele H, Tollrian R, Leese F (2012) Morphological and genetic analyses of xeniid soft coral diversity (Octocorallia; Alcyonacea). Org Divers Evol. doi: 10.1007/s13127-012-0119-x Google Scholar
  54. Stephens M, Smith N, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68:978–989PubMedCrossRefGoogle Scholar
  55. Tilot V, Leujak W, Ormond FG, Ashworth JA, Mabrouuk A (2008) Monitoring of South Sinai coral reefs: influence of natural and anthropogenic factors. Aquat Conserv Mar Freshw Ecosyst 18:1109–1126CrossRefGoogle Scholar
  56. van Ofwegen LP (2002) Status of knowledge of the Indo-Pacific soft coral genus Sinularia (Anthozoa: Octocorallia). In: Proceedings of the Ninth International Coral Reef Symposium, 1st edn. Ministry of Environment, California, pp 167–171Google Scholar
  57. Wei N-WV, Wallace CC, Dai C-F, Ruby K, Pillay M, Chen CA (2006) Analyses of the ribosomal internal transcribed spacers (ITS) and the 5.8S gene indicate that extremely high rDNA heterogeneity is a unique feature in the scleractinian coral genus Acropora (Scleractinia; Acroporidae). Zool Stud 45:404–418Google Scholar
  58. Williams GC (1992) The Alcyonacea of Southern Africa: Stoloniferous Octocorals and Soft Corals (Coelenterata, Anthozoa). Ann S Afr Mus 100:249–358Google Scholar
  59. Wright EP, Studer T (1889) Report on the Alcyonaria collected by H.M.S. Challenger during the years 1873–1876. Report on the scientific results of the voyage of H.M.S. Challenger during the years 1872–76. 31:1–314Google Scholar
  60. Zeevi-Ben-Yosef D, Benayahu Y (2008) Synergistic effects of UVR and temperature on survival of azooxanthellate and zooxanthellate early developmental stages of soft corals. Bull Mar Sci 83:401–414Google Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Roxanne D. Haverkort-Yeh
    • 1
  • Catherine S. McFadden
    • 2
  • Yehuda Benayahu
    • 3
  • Michael Berumen
    • 4
    • 5
  • Anna Halász
    • 3
  • Robert J. Toonen
    • 1
  1. 1.Hawai‘i Institute of Marine BiologyUniversity of Hawai‘i at MānoaHonoluluUSA
  2. 2.Department of BiologyHarvey Mudd CollegeClaremontUSA
  3. 3.Department of Zoology, George S. Wise Faculty of Life SciencesTel Aviv UniversityRamat AvivIsrael
  4. 4.Red Sea Research CenterKing Abdullah University of Science and TechnologyThuwalKingdom of Saudi Arabia
  5. 5.Biology DepartmentWoods Hole Oceanographic InstituteWoods HoleUSA

Personalised recommendations