Marine Biodiversity

, Volume 42, Issue 4, pp 481–488 | Cite as

Microsatellite loci to determine population structure in the yellow seahorse (Hippocampus kuda) and the three-spotted seahorse (H. trimaculatus)

  • Karan veer Singh
  • A. Gopalakrishnan
  • Wazir Singh Lakra
  • R. C. Sobti
Short Communication


Genetic diversity of seahorse species was studied using 12 polymorphic microsatellite DNA loci in the yellow seahorse Hippocampus kuda and the three-spotted seahorse H. trimaculatus from samples collected along the east and west coasts of India. Cross-species microsatellite loci amplification in populations of Indian seahorses showed significant numbers of private alleles associated with site-specific populations, which could be used for population genetic studies and management of species for conservation. Significant genotype heterogeneity indicated that the samples are not from the same gene pool, and that physical barriers exist which inhibit breeding between populations. The identified microsatellite loci can be further utilized in fine-scale population structure analysis of seahorses.


Microsatellite Cross-priming Genetic variation Seahorse Hippocampus kuda Hippocampus trimaculatus 



We thank DG, ICAR and staff at NBFGR Cochin Unit for providing facilities, and the staff at various research labs who provided whole-hearted support.


  1. Belkhir K, Borsa P, Chikhi L, Goudet J, Bonhomme F (1997)GENETIX 3.07, WindowsTMSoftware for Population Genetics.Laboratoire Génome et Populations, University of Montpellier II,MontpellierGoogle Scholar
  2. Boulenger GA (1900) Descriptions of a new seahorse (Hippocampus) from Muscat. Ann Mag Nat Hist 7(6):51–52Google Scholar
  3. Bovo G, Nishizawa T, Maltese C, Borghesan F, Mutinelli F, Montesi F, De Mas S (1999) Viral encephalo-retinopathy of farmed fish species in italy. Virus Res 63:143–146PubMedCrossRefGoogle Scholar
  4. Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014PubMedGoogle Scholar
  5. Ellegren H (2004) Microsatellites: simple sequences with complex evolution. Nat Rev Genet 5:435–445PubMedCrossRefGoogle Scholar
  6. Foster SJ, Vincent ACJ (2004) Life history and ecology of seahorse: implications for conservation and management. J Fish Biol 65:1–61CrossRefGoogle Scholar
  7. Galbusera PHA, Gillemot S, Jouk P, Teske PR, Hellemans B, Volckaert FAMJ (2007) Isolation of microsatellite markers for the endangered Knysna seahorse Hippocampus capensis and their use in the detection of a genetic bottleneck. Mol Ecol Notes 7(4):638–640CrossRefGoogle Scholar
  8. Gopalakrishnan A, Musammilu KK, Muneer PMA, Lal KK, Kapoor D, Ponniah AG, Mohindra V (2004) Microsatellite DNA markers to assess population structure of red-tailed barb, Gonoproktopterus curmuca. Acta Zool Sin 50(4):686–690Google Scholar
  9. Jones AG, Kvarnemo C, Moore GI, Simmons LW, Avise JC (1998) Microsatellite evidence for monogamy and sex-biased recombination in the Western Australian seahorse Hippocampus angustus. Mol Ecol 7:1497–1505Google Scholar
  10. Kuiter RH (2000) Seahorses, pipefishes and their relatives: a comprehensive guide to Syngnathiformes. TMC, ChorleywoodGoogle Scholar
  11. Lal KK, Chauhan T, Mandal A, Singh RK, Khulbe L, Ponniah AG, Mohindra V (2004) Identification of microsatellite DNA markers for population structure analysis in Indian major carp, Cirrhinus mrigala (Hamilton-Buchanan, 1882). J Appl Ichthyol 20(2):87–91CrossRefGoogle Scholar
  12. Langen K, Schwarzer J, Kullmann H, Bakker TCM, Thünken T (2011) Microsatellite support for active inbreeding in a cichlid fish. PLoS One 6(9):e24689. doi: 10.1371/journal.pone.0024689 PubMedCrossRefGoogle Scholar
  13. Lessios HA (1992) Testing electrophoretic data for agreementwith Hardy-Weinberg expectations. Mar Biol 112:517–523Google Scholar
  14. Louie KD, Bardeleben C (2006) Isolation of polymorphic tetranucleotide microsatellite markers for the bay pipefish Syngnathus leptorhynchus.Mol Ecol Notes 6:1117–1118Google Scholar
  15. Lourie SA, Randall JE (2003) A New Pygmy Seahorse, Hippocampus denise (Teleostei: Syngnathidae), from the Indo-Pacific. Zool Stud 42(2):284–291Google Scholar
  16. Lourie SA, Pritchard JC, Casey SP et al (1999a) The taxonomy of Vietnam’s exploited seahorses. Biol J Linn Soc 66:231–256CrossRefGoogle Scholar
  17. Lourie SA, Vincent ACJ, Hall HH (1999b) Seahorse: an identification guide to the world’s species and their conservation. Project Seahorse, LondonGoogle Scholar
  18. Lourie SA, Green DM, Vincent ACJ (2005) Dispersal, habitat differences, and comparative phylogeography of South East Asian seahorses (Syngnathidae: Hippocampus). Mol Ecol 14:1073–1094PubMedCrossRefGoogle Scholar
  19. Mohindra V, Khulbe L, Lal KK, Ponniah AG (2001b) Sequence of microsatellite locus L roh G1 in Labeo rohita. Accession and Locus # AF415207. NCBI sequence information, National Centre for Biotechnology Information.
  20. Mohindra V, Mishra A, Palanichamy M, Ponniah AG (2001b) Cross-species amplification of Catla catla microsatellite locus in Labeo rohita. Indian J Fish 48(1):103–108Google Scholar
  21. Moore SS, Sargeant LL, King TJ, Mattick JS, Georges M, Hetzel DJS (1991) The conservation of dinucleotide microsatellites among mammalian genomes allows use of heterologous PCR primer pairs in closely related species. Genomics 10:654–660PubMedCrossRefGoogle Scholar
  22. Neff BD, Gross MR (2001) Microsatellite evolution in vertebrates: inference from AC dinucleotide repeates. Evolution 55(9):1717–1733PubMedGoogle Scholar
  23. O’Connell, Wright (1997) Microsatellite DNA in fishes. Rev Fish Biol Fish 7:331–363CrossRefGoogle Scholar
  24. Pardo BG, Lopez A, Martinez P, Bouza C (2007) Novel microsatellite loci in the threatened European long- snouted seahorse (Hippocampus guttulatus) for genetic diversity and parentage analysis. Conserv Genet 8(5):1243–1245CrossRefGoogle Scholar
  25. Rousset F, Raymond M (1995) Testing heterozygote excess and deficiency. Genetics 140:1413–1419PubMedGoogle Scholar
  26. Scribner KT, Gust JR, Fields RL (1996) Isolation and characterization of novel amplification salmon microsatellite loci: cross-species and population genetic applications. Can J Fish Aquat Sci 53:833–841CrossRefGoogle Scholar
  27. Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139:457–462PubMedGoogle Scholar
  28. van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro–checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar
  29. Van Oosterhout C, Weetman D, Hutchinson WF (2006) Estimation and adjustment of microsatellite null alleles in non equilibrium populations. Mol Ecol Notes 6:255–256CrossRefGoogle Scholar
  30. Vincent ACJ (1996) The international trade in seahorses. TRAFFIC International, CambridgeGoogle Scholar
  31. Wang D, Shi J, Carlson SR, Cregan PB, Ward RW, Diers BW (2003) A low-cost, high-throughput polyacrylamide gel electrophoresis system for genotyping with microsatellite DNA marker. Crop Sci 43:1828–1832CrossRefGoogle Scholar
  32. Weir B, Cockerham C (1984) Estimating F statistics for the analysis of populationstructure. Evolution 38:1358–1370Google Scholar
  33. Zhang C-G, Cai B, Xu T-Q (1995) Fishes and fish resources in Xizang, China. China Agriculture Press, BeijingGoogle Scholar
  34. Zardoya R, Vollmer DM, Craddock C, Streelman JT, Karl S, Meyer A (1996) Evolutionary conservation of microsatellite flanking regions and their use in resolving the phylogeny of cichlid fishes (Pisces: Perciformes). Proc R Soc Lond B 263:1589–1598CrossRefGoogle Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer 2012

Authors and Affiliations

  • Karan veer Singh
    • 1
  • A. Gopalakrishnan
    • 2
  • Wazir Singh Lakra
    • 1
  • R. C. Sobti
    • 3
  1. 1.NBFGRLucknowIndia
  2. 2.NBFGRCochin Unit-NBFGR, CochinIndia
  3. 3.Punjab University ChandigarhChandigarhIndia

Personalised recommendations