Marine Biodiversity

, Volume 42, Issue 2, pp 137–159 | Cite as

High genetic diversity within Epimeria georgiana (Amphipoda) from the southern Scotia Arc

  • Anne-Nina LörzEmail author
  • Peter Smith
  • Katrin Linse
  • Dirk Steinke
Original Paper


DNA barcoding revealed four well-supported clades among amphipod specimens that keyed out to Epimeria georgiana Schellenberg, 1931, three clades with specimens from the southern Scotia Arc and one clade with specimens from the Weddell Sea. Detailed morphological investigations of sequenced specimens were conducted, through light and scanning electron microscopy. High magnification (500–2,000 fold) revealed features such as comb-scales on the first antenna and trich bearing pits on the fourth coxal plate to be similar for all specimens in the four clades. Consistent microstructure character differences in the Weddell Sea specimens combined with high genetic distances (COI divergence > 20%) allowed the description of Epimeria angelikae, a species new to science. Specimens of E. georgiana in the other three COI clades from the Scotia Arc were morphologically indistinguishable. Representative specimens of clade A are also illustrated in detail. Our results on the high genetic divergences in epimeriid amphipods support the theory of the southern Scotia Arc being a centre of Antarctic diversification.


DNA barcoding Epimeriidae New species Scanning electron microscopy Scotia Arc High biodiversity 



We are grateful to the team at the Canadian Centre for DNA Barcoding (supported by Genome Canada through the Ontario Genomics Institute) for providing they sequences for the CAML project. Angelika Brandt (Hamburg) kindly let the senior author use her microscope. Renate Walter (Hamburg) helped with the scanning electron microscopy. Erika Mackay (NIWA) kindly inked the drawings. Niamh Kilgallen (NIWA) and three anonymous reviewers are thanked for constructive criticism on an earlier version of the manuscript.

The Natural History Museums of Stockholm and London are thanked for the loan of type material. The curational help of the NIWA Invertebrate Collection (NIC) team is highly appreciated. A.N.L and P.S were supported by research funded by the New Zealand Government under the NZ International Polar Year-Census of Antarctic Marine Life Project, and gratefully acknowledge the Ministry of Fisheries Science Team and Ocean Survey 20/20 CAML Advisory Group (Land Information New Zealand, Ministry of Fisheries, Antarctica New Zealand, Ministry of Foreign Affairs and Trade, and National Institute of Water and Atmospheric Research Ltd.). K.L. was funded by The Natural Environment Research Council. D.S. was supported by funding of the Alfred P. Sloan Foundation to MarBOL. This study is part of the British Antarctic Survey Polar Science for Planet Earth Programme and the NZ International Polar Year-Census.


  1. Allcock AL, Barratt I, Eleaume M, Linse K, Norman MD, Smith PJ, Steinke D, Stevens DW, Strugnell J (2011) Cryptic speciation and the circumpolarity debate: a case study on endemic Southern Ocean octopuses using the COI barcode of life. Deep-Sea Res Pt II 58:230–241. doi: 10.1016/j.dsr2.2010.05.016 CrossRefGoogle Scholar
  2. Arango CP, Soler-Membrives A, Miller KJ (2011) Genetic differentiation in the circum-Antarctic sea spider Nymphon australe (Pycnogonida; Nymphonidae). Deep Sea Res Pt II58:212–219. doi:  10.1016/j.dsr2.2010.05.019
  3. Barnard KH (1932) Amphipoda. Discov Rep 5:1–326Google Scholar
  4. Barnes DKA, Kaiser S, Griffiths HJG, Linse K (2009) The marine, intertidal, fresh-water and terrestrial fauna of the South Orkney Islands, Antarctica. J Biogeogr 36:756–759CrossRefGoogle Scholar
  5. Boeck A (1871) Crustacea Amphipoda borealia et arctica Forhandliner I Videnskabs-Selskabet I Christiana 1870:83–280Google Scholar
  6. Bradbury MR, Bradbury JH, Williams WD (1998) Scanning electron microscope studies of rugosities, cuticular microstructures of taxonomic significance of the Australian amphipod family Neoniphargidae (Amphipoda). Crustaceana 71:603–614CrossRefGoogle Scholar
  7. Bucklin A, Steinke D, Blanco-Bercial L (2011) DNA Barcoding of Marine Metazoa. Ann Rev Mar Sci 3:18.11-18.38.Google Scholar
  8. Buhay JE (2009) “COI-like” sequences are becoming problematic in molecular systematic and DNA barcoding studies. J Crustac Biol 29(1):96–110CrossRefGoogle Scholar
  9. Chu KH, Tong JG, Chan TY (1999) Mitochondrial cytochrome oxidase I sequence divergence in some Chinese species of Charybdis (Crustacea: Decapoda: Portunidae). Biochem Syst Ecol 27:461–468CrossRefGoogle Scholar
  10. Clarke A, Crame JA (1992) The Southern Ocean benthic fauna and climate change: a historical perspective. Philos Trans R Soc Lond B Biol Sci 338:99–109Google Scholar
  11. Clarke A, Crame JA (2010) Evolutionary dynamics at high latitudes: speciation and extinction in polar marine faunas. Philos Trans R Soc Biol Sci 365:3655–3666. doi: 10.1098/rstb.2010.0270 CrossRefGoogle Scholar
  12. Coleman CO (2003) ‘Digital inking’: how to make perfect line drawings on computers. Org Divers Evo 3(Electr Suppl 14):1–14Google Scholar
  13. Coleman CO (2007) Synopsis of the Amphipoda of the Southern Ocean. Volume 2: Acanthonotozomellidae, Amathillopsidae, Dikwidae, Epimeriidae, Iphimediidae, Ochlesidae and Vicmusiidae. Bull Inst R Sci Nat Belg Biol 77:1–134Google Scholar
  14. Coleman CO (2009) Drawing setae the digital way. Zoosyst Evol 85(2):305–310CrossRefGoogle Scholar
  15. Costa FO, Carvalho GR (2007) The Barcode of Life Initiative: synopsis and prospective societal impacts of DNA barcoding of fish. Genom Soc Policy 3:29–40Google Scholar
  16. Cuadras J (1982) Microtrichs of amphipod Crustacea. Morphology and distribution. Mar Behav Physiol 8:333–343CrossRefGoogle Scholar
  17. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evol 39:783–791CrossRefGoogle Scholar
  18. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit 1 from diverse metazoan invertebrates. Mol Mar Biol Biotech 3:294–299Google Scholar
  19. Grant RA, Linse K (2009) Barcoding Antarctic biodiversity: current status and the CAML initiative, a case study of marine invertebrates. Polar Biol 32(11):1629–1637. doi: 10.1007/s00300-009-0662-x CrossRefGoogle Scholar
  20. Grant RA, Griffiths HJ, Steinke D, Wadley V, Linse K (2011) Antarctic DNA barcoding; a drop in the ocean? Polar Biol 34:775–780. doi: 10.1007/s00300-010-0932-7 CrossRefGoogle Scholar
  21. Griffiths HJ, Arango CP, Munilla T, McInnes SJ (2011) Biodiversity and biogeography of Southern Ocean pycnogonids. Ecography 34:616–627. doi: 10.1111/j.1600-0587.2010.06612.x Google Scholar
  22. Halcrow K, Bousfield EL (1987) Scanning electron microscopy of surface microstructures of some Gammaridean amphipod crustaceans. J Crustac Biol 7:274–287CrossRefGoogle Scholar
  23. Havermans C, Nagy ZT, Sonet G, De Broyer C, Martin P(2011) DNA barcoding reveals new insights into the diversity of Antarctic species of Orchomene sensu lato (Crustacea: Amphipoda: Lysianassoidea). Deep-Sea Res Pt II 58:230–241. doi:  10.1016/j.dsr2.2010.09.028 Google Scholar
  24. Havermans C, Nagy ZT, Sonet G, De Broyer C, Martin P (2010) Incongruence between molecular phylogeny and morphological classification in amphipod crustaceans: a case study of Antarctic lysianassoids. Mol Phylol Evo 55:202–209CrossRefGoogle Scholar
  25. Hebert PDN, Cywinska A, Ball SL, DeWaard JR (2003a) Biological identifications through DNA barcodes. Proc R Soc Lond Ser B—Biol Sci 270:313–321. doi: 10.1098/rspb.2002.2218 CrossRefGoogle Scholar
  26. Hebert PDN, Ratnasingham S, deWaard JR (2003b) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc Lond Ser B - Biol Sci 270:S96–S99. doi: 10.1098/rsbl.2003.0025 CrossRefGoogle Scholar
  27. Hebert PDN, Stoeckle MY, Zemlak TS, Francis CM (2004) Identification of birds through DNA barcodes. PloS Biol 2:1657–1663. doi: 10.1371/journal.pbio.0020312 CrossRefGoogle Scholar
  28. Held C (2003) Molecular evidence for cryptic speciation within the widespread Antarctic crustacean Ceratoserolis trilobitoides (Crustacea, Isopoda). In: Huiskes AH, Gieskes WW, Rozema J, Schorno RM, van der Vies SM, Wolff WJ (eds) Antarctic biology in a global context. Backhuys, Leiden, pp 135–139Google Scholar
  29. Held C, Leese F (2007) The utility of fast evolving molecular markers for studying speciation in the Antarctic benthos. Polar Biol 30:513–521CrossRefGoogle Scholar
  30. Hunter RL, Halanych KM (2008) Evaluating connectivity in the brooding brittle star Astrotoma agassizii across the drake passage in the Southern Ocean. J Hered 99:137–148PubMedCrossRefGoogle Scholar
  31. Ivanova NV, deWaard JR, Hebert PDN (2006) An inexpensive, automation-friendly protocol for recovering high-quality DNA. Mol Ecol Notes 6:998–1002CrossRefGoogle Scholar
  32. Kaïm-Malka RA, Maebe S, Macquart-Moulin C, Bezac C (1999) Antennal sense organs of Natatolana borealis (Lilljeborg 1851) (Crustacea: Isopoda). J Nat Hist 33(1):65–88CrossRefGoogle Scholar
  33. Kaufmann RS (1994) Structure and function of chemoreceptors in scavenging Lysianassoid amphipods. J Crustac Biol 14:54–71CrossRefGoogle Scholar
  34. Khalaji-Pirbalouty V, Wägele J-W (2010) Two new species of Ligia Fabricius, 1798 (Crustacea: Isopoda: Ligiidae) from the coasts of the Persian and Aden gulfs. Org Divers Evol 10:135–145. doi: 10.1007/s13127-010-0003-5 CrossRefGoogle Scholar
  35. Krabbe K, Leese F, Mayer C, Tollrian R, Held C (2010) Cryptic mitochondrial lineages in the widespread pycnogonid Colossendeis megalonyx Hoek, 1881 from Antarctic and Subantarctic waters. Pol Biol 33:281–292. doi: 10.1007/s00300-009-0703-5 CrossRefGoogle Scholar
  36. Leese F, Kop A, Wägele J-W, Held C (2008) Cryptic speciation in a benthic isopod from Patagonian and Falkland Island waters and the impact of glaciations on its population structure. Front Zool 5:1–15CrossRefGoogle Scholar
  37. Leese F, Agrawal S, Held C (2010) Long-distance island hopping without dispersal stages: transportation across major zoogeographic barriers in a Southern Ocean ispod. Naturwissenschaften 97:583–594. doi: 10.1007/s00114-010-0674-y PubMedCrossRefGoogle Scholar
  38. Linse K, Cope T, Lörz A-N, Sands C (2007) Is the Scotia Sea a centre of Antractic marine diversification? Some evidence of cryptic speciation in the circum-Antarctic bivalve Lissarca notorcadenis (Arcoidea: Philobryidae). Pol Biol 30:1059–1068CrossRefGoogle Scholar
  39. Lörz A-N (2011) Pacific Epimeriidae (Amphipoda: Crustacea): Epimeria. J Mar Biol Assoc UK 91:471-477Google Scholar
  40. Lörz A-N, Maas EW, Linse K, Fenwick GD (2007) Epimeria schiaparelli sp. nov., an amphipod crustacean (family Epimeriidae) from the Ross Sea, Antarctica, with molecular characterisation of the species complex. Zootaxa 1402:23–37Google Scholar
  41. Lörz A-N, Maas EW, Linse K, Coleman CO (2009) Do circum-Antarctic species exist in peracarid Amphipoda? A case study in the genus Epimeria Costa, 1851 (Crustacea, Peracarida, Epimeriidae). ZooKeys 18:91–128Google Scholar
  42. Meier R (2008) DNA sequences in taxonomy: opportunities and challenges. In: Wheeler QD (ed) The new taxonomy. CRC Press/Taylor and Francis, Boca Raton, pp 95–128CrossRefGoogle Scholar
  43. Meier R, Zhang GY, Ali F (2008) The use of mean instead of smallest interspecific distances exaggerates the size of the “barcoding gap” and leads to misidentification. Syst Biol 57(5):809–813. doi: 10.1080/10635150802406343 PubMedCrossRefGoogle Scholar
  44. Meyer CP, Paulay G (2005) DNA barcoding: error rates based on comprehensive sampling. PloS Biol 3(12):2229–2238. doi: 10.1371/journal.pbio.0030422 CrossRefGoogle Scholar
  45. Meyran JC, Monnerot M, Taberlet P (1997) Taxonomic status and phylogenetic relationships of some species of the genus Gammarus (Crustacea, Amphipoda) deduced from mitochondrial DNA sequences. Mol Phylogenet Evol 8:1–10PubMedCrossRefGoogle Scholar
  46. O’Loughlin PM, Paulay G, Davey N, Michonneau F (2011) The Antarctic region as a marine biodiversity hotspot for echinoderms: diversity and diversification of sea cucumbers. Deep-Sea Res Pt II 58:264–275. doi: 10.1016/j.dsr2.2010.10.011 CrossRefGoogle Scholar
  47. Oshel PE, Steele DH (1988) Comparative morphology of amphipod setae, and a proposed classification of setal types. Crustaceana (Suppl 13):90–99Google Scholar
  48. Pearse JS, Mooi R, Lockhard S, Brandt A (2009) Brooding and species diversity in the Southern Ocean: selection for brooders or speciation within brooding clades? In: Krupnik I, Lang MA, Miller SE (eds) Smithsonian at the poles: contributions to International Polar Year science. Smithsonian Institution Scholarly Press, Washington, pp 181–196CrossRefGoogle Scholar
  49. Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25(7):1253–1256. doi: 10.1093/molbev/msn083 PubMedCrossRefGoogle Scholar
  50. Radulovici AE, Sainte-Marie B, Dufresne F (2009) DNA barcoding of marine crustaceans from the Estuary and Gulf of St Lawrence: a regional-scale approach. Mol Ecol Resour 9:181–187PubMedCrossRefGoogle Scholar
  51. Radulovici AE, Archambault P, Dufresne F (2010) DNA barcodes for marine biodiversity: moving fast forward? Diversity 2:450–472. doi: 10.3390/d2040450 CrossRefGoogle Scholar
  52. Ratnasingham S, Hebert PDN (2007) The Barcode of Life Data System. Mol Ecol Notes 7:355–364PubMedCrossRefGoogle Scholar
  53. Raupach MJ, Wagele JW (2006) Distinguishing cryptic species in Antarctic Asellota (Crustacea: Isopoda)—a preliminary study of mitochondrial DNA in Acanthaspidia drygalskii. Antarct Sci 18:191–198. doi: 10.1017/s0954102006000228 CrossRefGoogle Scholar
  54. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinforma 19:1572–1574. doi: 10.1093/bioinformatics/btg180 CrossRefGoogle Scholar
  55. Schellenberg A (1931) Gammariden und Caprelliden des Magellangebietes, Südgeorgiens und der Westantarktis. In: Odhner T (ed) Further zoological results of the Swedish Antarctic Expedition 1901–1903, Vol. 2, P.A. Norstedt, Stockholm, pp 1–290, pl 291Google Scholar
  56. Schnabel KE, Hebert PDN (2003) Resource-associated divergence in the Arctic marine amphipod Paramphithoe hystrix. Mar Biol 143:851–857. doi: 10.1007/s00227-003-1126-4 CrossRefGoogle Scholar
  57. Shearer TL, Coffroth MA (2008) Barcoding corals: limited by interspecific divergence, not intraspecific variation. Mol Ecol Resour 8:247–255. doi: 10.1111/j.1471-8286.2007.01996.x PubMedCrossRefGoogle Scholar
  58. Smith PJ, Steinke D, McVeagh SM, Stewart AL, Struthers CD, Roberts CD (2008) Molecular analysis of Southern Ocean skates (Bathyraja) reveals a new species of Antarctic skate. J Fish Biol 73:1170–1182CrossRefGoogle Scholar
  59. Smith PJ, Steinke D, McMillan P, Stewart AL, McVeagh SM, Astarloa JD, Welsford D, Ward R (2010) DNA barcoding highlights a cryptic species of grenadier (genus Macrourus) in the Southern Ocean. J Fish Biol. doi: 10.1111/j.1095-8649.2010.02846.x
  60. Song H, Buhay JE, Whiting MF, Crandall KA (2008) Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. Proceedings of the National Academy of Sciences USA 105:13486–13491CrossRefGoogle Scholar
  61. Steinke D, Zemlak TS, Hebert PDN (2009) Barcoding Nemo: DNA-Based Identifications for the Ornamental Fish Trade. Plos One 4. doi: 10.1371/journal.pone.0006300
  62. Swofford DL (2003) PAUP*: phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland, MA, United StatesGoogle Scholar
  63. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599. doi: 10.1093/molbev/msm092 PubMedCrossRefGoogle Scholar
  64. Thatje S, Hillenbrand CD, Larter R (2005) On the origin of Antarctic marine benthic community structure. Trend Ecol Evol 20:534–540CrossRefGoogle Scholar
  65. Vogler AP, Monaghan MT (2007) Recent advances in DNA taxonomy. J Zool Syst Evol Res 45: 1–10Google Scholar
  66. Walker AO (1903) Amphipoda of the ‘Southern Cross’ Antarctic Expedition. J Linn Soc Lond Zool 29:38–6Google Scholar
  67. Walker AO (1907) Crustacea III. Amphipoda. In: National Antarctic Expedition 1901–1904, Natural History Vol 3, British Museum, London pp 1–38, pls 1–13.Google Scholar
  68. Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PDN (2005) DNA barcoding Australia’s fish species. Philos Trans R Soc Lond B Biol Sci 360:1847–1857PubMedCrossRefGoogle Scholar
  69. Ward RD, Hanner R, Hebert PDN (2009) The campaign to DNA barcode all fishes, FISH-BOL. J Fish Biol 74:329–356. doi: 10.1111/j.1095-8649.2008.02080.x PubMedCrossRefGoogle Scholar
  70. Watling L, Thurston M (1989) Antarctica as an evolutionary incubator: evidence from the cladistic biogeography of the amphipod Family Iphimediidae. In: Crame J (ed) Origins and evolution of the Antarctic biota. Geological Society, London. Geol Soc Spec Publ 47:297–313CrossRefGoogle Scholar
  71. Waugh J (2007) DNA barcoding in animal species: progress, potential and pitfalls. Bioessays 29:188–197. doi: 10.1002/bies.20529 PubMedCrossRefGoogle Scholar
  72. Wilson NG, Schroedl M, Halanych KM (2009) Ocean barriers and glaciation: evidence for explosive radiation of mitochondrial lineages in the Antarctic sea slug Doris kerguelenensis (Mollusca, Nudibranchia). Mol Ecol 18:965–984PubMedCrossRefGoogle Scholar
  73. Witt JDS, Threloff DL, Hebert PDN (2006) DNA barcoding reveals extraordinary cryptic diversity in an amphipod genus: implications for desert spring conservation. Mol Ecol 15:3073–3082. doi: 10.1111/j.1365-294X.2006.02999.x PubMedCrossRefGoogle Scholar
  74. Zemlak TS, Ward RD, Connell AD, Holmes BH, Hebert PDN (2009) DNA barcoding reveals overlooked marine fishes. Mol Ecol Resour 9:237–242. doi: 10.1111/j.1755-0998.2009.02649.x PubMedCrossRefGoogle Scholar
  75. Zimmer A, Araujo PB, Bond-Buckup P (2009) Diversity and arrangement of the cuticular structures of Hyalella (Crustacea: Amphipoda: Dogielinotidae) and their use in taxonomy. Zoologia 26:127–142Google Scholar

Copyright information

© Senckenberg, Gesellschaft für Naturforschung and Springer 2011

Authors and Affiliations

  • Anne-Nina Lörz
    • 1
    Email author
  • Peter Smith
    • 2
  • Katrin Linse
    • 3
  • Dirk Steinke
    • 4
  1. 1.National Institute of Water and Atmospheric Research (NIWA)WellingtonNew Zealand
  2. 2.Museum VictoriaMelbourne VicAustralia
  3. 3.British Antarctic SurveyCambridgeUK
  4. 4.Biodiversity Institute of OntarioUniversity of GuelphGuelphCanada

Personalised recommendations