Marine Biodiversity

, Volume 41, Issue 2, pp 313–323 | Cite as

New records and molecular characterization of Acrozoanthus (Cnidaria: Anthozoa: Hexacorallia) and its endosymbionts (Symbiodinium spp.) from Taiwan

  • James Davis Reimer
  • Sohta A. Ishikawa
  • Mamiko Hirose
Original Paper


During a recent survey of the zoanthid (Cnidaria: Anthozoa) fauna of Taiwan, specimens resembling Acrozoanthus australiae (family Zoanthidae) were found at Kenting and Green Island, Taiwan, attached to eunicid worm tubes growing out from under large Porites coral colonies in coral reef environments. As this species had previously been described only from eunicid worm tubes in mud flats in Australia and Indonesia, and no studies had specifically examined its phylogenetic position, molecular and morphological examinations were conducted to determine the identity of the Taiwan specimens, and its phylogenetic relationships with other Zoanthidae genera and species. At the same time, endosymbiotic Symbiodinium types within specimens were also investigated. Results from the phylogenetic analyses of sequences of three DNA markers [cytochrome oxidase subunit I, mitochondrial 16S ribosomal DNA, internal transcribed spacer 2 of ribosomal DNA (ITS-2)] strongly suggested that the Taiwan specimens were identical with A. australiae. Based on endosymbiont ITS-2 sequences, these colonies were in symbiosis with Symbiodinium clade D1a (= S. trenchii), theorized to be adapted to both comparatively cold and hot marine environments. Furthermore, phylogenetic analyses from all three zoanthid DNA markers suggest that Acrozoanthus may be within the closely related genus Zoanthus. This study demonstrates the overall lack of data on zoanthid species’ distributions, and it is recommended the diversity of zoanthids within the nearby Coral Triangle be investigated to link Indo-Australian zoanthid data with information from Japan and the northwest Pacific.


Acrozoanthus Symbiodinium Zoanthid COI mt 16S rDNA ITS-rDNA 

Supplementary material

12526_2010_69_Fig4_ESM.gif (116 kb)
Fig. S1

ML tree of the ITS-rDNA sequences for clade D Symbiodinium including specimens from this study. Values at branches represent ML and NJ bootstrap probabilities, respectively. New isolates and sequences from this study in bold (GIF 116 kb)

12526_2010_69_MOESM1_ESM.eps (310 kb)
High resolution image (EPS 309 kb)
12526_2010_69_MOESM2_ESM.xls (7 kb)
Table S1(XLS 7 kb)


  1. Aguilar C, Reimer JD (2010) Molecular phylogenetic hypotheses of Zoanthus species (Anthozoa: Hexacorallia) using RNA secondary structure of the internal transcribed spacer (ITS2). Mar Biodiv 40:195–204CrossRefGoogle Scholar
  2. Aguilar C, Sánchez JA (2007) Molecular morphometrics: contribution of ITS2 sequences and predicted RNA secondary structures to octocoral systematics. Bull Mar Sci 81:335–349Google Scholar
  3. Burnett WJ (2002) Longitudinal variation in algal symbionts (zooxanthellae) from the Indian Ocean zoanthid Palythoa caesia. Mar Eco Prog Ser 234:105–109CrossRefGoogle Scholar
  4. Burnett WJ, Benzie JAH, Beardmore JA, Ryland JS (1995) Patterns of genetic subdivision in populations of a clonal cnidarian, Zoanthus coppingeri, from the Great Barrier Reef. Mar Biol 122:665–673CrossRefGoogle Scholar
  5. Burnett WJ, Benzie JAH, Beardmore JA, Ryland JS (1997) Zoanthids (Anthozoa, Hexacorallia) from the Great Barrier Reef and Torres Strait, Australia: systematics, evolution and a key to species. Coral Reefs 16:55–68CrossRefGoogle Scholar
  6. Chen CA, Lam KK, Nakano Y, Tsai WS (2003) A stable association of the stress-tolerant zooxanthellae, Symbiodinium clade D, with the low-temperature-tolerant coral, Oulastrea crispata (Scleractinia: Faviidae) in subtropical non-reefal coral communities. Zool Stud 42:540–550Google Scholar
  7. Fabricius KE, Mieog JC, Colin PL, Idip D, Van Oppen MJH (2004) Identity and diversity of coral endosymbionts (zooxanthellae) from three Paluan reefs with contrasting bleaching, temperature and shading histories. Mol Ecol 13:2445–2458PubMedCrossRefGoogle Scholar
  8. Fautin DG (2009) Hexacorallians of the world.
  9. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  10. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotech 3:294–299Google Scholar
  11. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704PubMedCrossRefGoogle Scholar
  12. Haddon AC (1895) Branched worm-tubes and Acrozoanthus. Sci Proc R Dubl Soc VIII:344-346Google Scholar
  13. Hoeksema BW (2007) Delineation of the Indo-Malayan centre of maximum marine biodiversity: the Coral Triangle. In: Renema W (ed) Biogeography, time, and place: distributions, barriers, and islands. Springer, Leiden, pp 117–178CrossRefGoogle Scholar
  14. Huang D, Meier R, Todd PA, Chou LM (2008) Slow mitochondrial COI sequence evolution at the base of the metazoan tree and its implications for DNA barcoding. J Mol Evol 66:167–174PubMedCrossRefGoogle Scholar
  15. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120PubMedCrossRefGoogle Scholar
  16. LaJeunesse TC (2002) Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs. Mar Biol 141:387–400CrossRefGoogle Scholar
  17. LaJeunesse TC, Pettay DT, Sampayo EM, Phogsuwan N, Brown B, Obura DO, Hoegh-Guldberg O, Fitt WK (2010) Long-standing environmental conditions, geographic isolation and host-specificity influence the relative ecological dominance and genetic diversification of coral endosymbionts in the genus Symbiodinium. J Biogeogr. doi:10.1111/j.1365-2699.2010.02273.x Google Scholar
  18. Muirhead A, Ryland JS (1985) A review of the genus Isaurus Gray 1828 (Zoanthidea), including new records from Fiji. J Nat Hist 19:323–335CrossRefGoogle Scholar
  19. Perrière G, Gouy M (1996) WWW-query: an on-line retrieval system for biological sequence banks. Biochimie 78:364–369PubMedCrossRefGoogle Scholar
  20. Reimer JD, Fujii T (2010) Four new species and one new genus of zoanthids (Cnidaria: Hexacorallia) from the Galápagos. ZooKeys 42:1–36CrossRefGoogle Scholar
  21. Reimer JD, Todd PA (2009) Preliminary molecular examination of zooxanthellate zoanthid (Hexacorallia, Zoantharia) and associated zooxanthellae (Symbiodinium spp.) diversity in Singapore. Raff Bull Zool Suppl 22:103–120Google Scholar
  22. Reimer JD, Ono S, Takishita K, Fujiwara Y, Tsukahara J (2004) Reconsidering Zoanthus spp. diversity: molecular evidence of conspecifity within four previously presumed species. Zool Sci 21:517–525PubMedCrossRefGoogle Scholar
  23. Reimer JD, Ono S, Iwama A, Tsukahara J, Takishita K, Maruyama T (2006a) Morphological and molecular revision of Zoanthus (Anthozoa: Hexacorallia) from southwestern Japan with description of two new species. Zool Sci 23:261–275PubMedCrossRefGoogle Scholar
  24. Reimer JD, Ono S, Takishita K, Tsukahara J, Maruyama T (2006b) Molecular evidence suggesting species in the zoanthid genera Palythoa and Protopalythoa (Anthozoa: Hexacorallia) are congeneric. Zool Sci 23:87–94PubMedCrossRefGoogle Scholar
  25. Reimer JD, Takishita K, Ono S, Maruyama T, Tsukahara J (2006c) Latitudinal and intracolony ITS-rDNA sequence variation in the symbiotic dinoflagellate genus Symbiodinium (Dinophyceae) in Zoanthus sansibaricus (Anthozoa: Hexacorallia). Phycol Res 54:122–132CrossRefGoogle Scholar
  26. Reimer JD, Hirano S, Fujiwara Y, Sinniger F, Maruyama T (2007a) Morphological and molecular characterization of Abyssoanthus nankaiensis, a new family, new genus and new species of deep-sea zoanthid (Anthozoa: Hexacorallia: Zoantharia) from a northwest Pacific methane cold seep. Invertebr Syst 21:255–262CrossRefGoogle Scholar
  27. Reimer JD, Ono S, Tsukahara J, Takishita K, Maruyama T (2007b) Non-seasonal clade-specificity and subclade microvariation in symbiotic dinoflagellates (Symbiodinium spp.) in Zoanthus sansibaricus (Anthozoa: Hexacorallia) at Kagoshima Bay, Japan. Phycol Res 55:58–65CrossRefGoogle Scholar
  28. Reimer JD, Takishita K, Ono S, Tsukahara J, Maruyama T (2007c) Molecular evidence suggesting intraspecific hybridization in Zoanthus (Anthozoa: Hexacorallia). Zool Sci 24:346–359PubMedCrossRefGoogle Scholar
  29. Reimer JD, Nonaka M, Sinniger F, Iwase F (2008a) Morphological and molecular characterization of a new genus and new species of parazoanthid (Anthozoa: Hexacorallia: Zoantharia) associated with Japanese red coral (Paracorallium japonicum) in southern Japan. Coral Reefs 27:935–949CrossRefGoogle Scholar
  30. Reimer JD, Ono S, Tsukahara J, Iwase F (2008b) Molecular characterization of the zoanthid genus Isaurus (Anthozoa: Hexacorallia) and its zooxanthellae (Symbiodinium spp). Mar Biol 153:351–363CrossRefGoogle Scholar
  31. Reimer JD, Shah MMR, Sinniger F, Yanagi K, Suda S (2010) Preliminary analyses of cultured free-living Symbiodinium isolated from the oceanic Ogasawara Islands, Japan. Mar Biodiv 40:237–247. doi:10.1007/s12526-010-0044-1 CrossRefGoogle Scholar
  32. Rodriguez F, Oliver JL, Marin A, Medina JR (1990) The general stochiatic model of nucleotide substitution. J Theor Biol 142:485–501PubMedCrossRefGoogle Scholar
  33. Ronquist F, Huelsenbeck JP (2003) Bayesian phylogenetic inference under mixed models. Bioinformatics (Oxford) 19:1572–1574CrossRefGoogle Scholar
  34. Ryland JS (1997) Budding in Acrozoanthus Saville-Kent, 1893 (Anthozoa: Zoanthidea). In: den Hartog JC (ed) Proceedings of the 6th International Conference of Coelenterate Biology. Nationaal Natuurhistorisch Museum, Leiden, pp 423–428Google Scholar
  35. Ryland JS, Brasseur MM, Lancaster JE (2004) Use of Cnidae in taxonomy: implications from a study of Acrozanthus australiae (Hexacorallia, Zoanthidea). J Nat Hist 38:1193–1223CrossRefGoogle Scholar
  36. Sampayo EM, Ridgway T, Bongaerts P, Hoegh-Guldberg O (2008) Bleaching susceptibility and mortality of corals are determined by fine-scale differences in symbiont type. Proc Natl Acad Sci USA 105:10444–10449PubMedCrossRefGoogle Scholar
  37. Saville-Kent W (1893) The Great Barrier Reef of Australia; its products and potentialities. WH Allen and Company, LondonGoogle Scholar
  38. Shearer TL, Van Oppen MJH, Romano SL, Woerheide G (2002) Slow mitochondrial DNA sequence evolution in the Anthozoa (Cnidaria). Mol Ecol 11:2475–2487PubMedCrossRefGoogle Scholar
  39. Shimodaira H (2002) An approximately unbiased test of phylogenetic tree selection. Syst Biol 51:492–508PubMedCrossRefGoogle Scholar
  40. Shimodaira H, Hasegawa M (1999) Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Ecol 16:1114–1116Google Scholar
  41. Shimodaira H, Hasegawa M (2001) CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics (Oxford) 17:1246–1247CrossRefGoogle Scholar
  42. Sinniger F, Häussermann V (2009) Zoanthids (Cnidaria: Hexacorallia: Zoantharia) from shallow waters of the southern Chilean fjord region with the description of a new genus and two new species. Org Divers Evol 9:23–36CrossRefGoogle Scholar
  43. Sinniger F, Montoya-Burgos JI, Chevaldonnè P, Pawlowski J (2005) Phylogeny of the order Zoantharia (Anthozoa, Hexacorallia) based on the mitochondrial ribosomal genes. Mar Biol 147:1121–1128CrossRefGoogle Scholar
  44. Sinniger F, Reimer JD, Pawlowski J (2008) Potential of DNA sequences to identify zoanthids (Cnidaria: Zoantharia). Zool Sci 25:1253–1260PubMedCrossRefGoogle Scholar
  45. Sinniger F, Reimer JD, Pawlowski J (2010) The Parazoanthidae DNA taxonomy: description of two new genera. Mar Biodiv 40:57–70CrossRefGoogle Scholar
  46. Sugita T, Nishikawa A, Ikeda R, Shinoda T (1999) Identification of medically relevant Trichosporon species based on sequences of internal transcribed spacer regions and construction of a database for Trichosporon identification. J Clin Microbiol 37:1985–1993PubMedGoogle Scholar
  47. Swain T (2009) Phylogeny-based species delimitations and the evolution of host associations in symbiotic zoanthids (Anthozoa, Zoanthidea) of the wider Caribbean region. Zool J Linn Soc 156:223–238CrossRefGoogle Scholar
  48. Swofford DL (1998) PAUP*. V Phylogenetic analysis using parsimony (*and other methods), version 4. Sinauer Associates, Sunderland, USAGoogle Scholar
  49. Ulstrup KE, Van Oppen MJH (2003) Geographic and habitat partitioning of genetically distinct zooxanthellae (Symbiodinium) in Acropora corals on the Great Barrier Reef. Mol Ecol 12:3477–3484PubMedCrossRefGoogle Scholar

Copyright information

© Senckenberg, Gesellschaft für Naturforschung and Springer 2010

Authors and Affiliations

  • James Davis Reimer
    • 1
    • 2
  • Sohta A. Ishikawa
    • 3
  • Mamiko Hirose
    • 1
  1. 1.Molecular Invertebrate Systematics and Ecology Laboratory, Rising Star Program, Transdisciplinary Research Organization for Subtropical Island Studies (TRO-SIS)University of the RyukyusNishiharaJapan
  2. 2.Marine Biodiversity Research ProgramInstitute of Biogeosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC)YokosukaJapan
  3. 3.Graduate School of Life and Environmental SciencesUniversity of TsukubaTsukubaJapan

Personalised recommendations