Marine Biodiversity

, Volume 41, Issue 1, pp 5–12 | Cite as

Picoplankton diversity in the Arctic Ocean and surrounding seas

  • Connie LovejoyEmail author
  • Pierre E. Galand
  • David L. Kirchman
Arctic Ocean Diversity Synthesis


Microbes, which are organisms that are visible only with a microscope, drive global biogeochemical cycling and CO2-fixing forms are the base of the marine arctic food web. Two of the three domains of life, Bacteria and Archaea, are exclusively microbial, and microbes account for the majority of diversity within the third domain, Eucarya. Although morphological diversity among the smallest microbes is limited, phylogenetic diversity among microbes is vast. With each of several major technological advances, estimates of global microbial diversity increase by orders of magnitude. The Arctic is no exception, with most major groups of marine microbes having been found in arctic marine waters using molecular biological techniques. Here we provide a brief overview of microbial diversity revealed by environmental surveys of the small subunit rRNA gene (SS rRNA), which is the most widely used marker for identifying microbes. Similar to larger phytoplankton identified morphologically, small heterotrophic prokaryotes and photosynthetic eukaryotes in the Arctic are a mixture of uniquely arctic taxa and more cosmopolitan species. Among Bacteria, Proteobacteria are predominant in surface and deep waters as with other oceans. However, the recent massively parallel sequencing of the SS rRNA gene has revealed that at finer taxonomic scales arctic bacterial and archaeal communities also differ from their temperate counterparts, suggesting endemicity as well.


Arctic Ocean Bacteria Archaea Eucarya Biodiversity Gene surveys Pyrosequencing 



C.L. was supported for this work by the Natural Sciences and Engineering Research Council of Canada (NSERC) SRO and Discovery grants and ArcticNet. We thank André Comeau for comments and useful discussions. D.L.K. was supported by National Science Foundation (NSF) OPP 0806295 and NSF OPP 0632233. We also thank ArcOD investigators, especially Bodil Bluhm for the invitation and inspiration to write this review. Comments from three anonymous reviewers greatly improved the original manuscript, and we thank them for their time attention to detail. This publication is part of the Census of Marine Life’s Arctic Ocean Diversity project synthesis and was originally presented at the Arctic Frontiers Conference in Tromsø, Norway, January 2010. The support and initiative of ARCTOS and Arctic Frontiers are gratefully acknowledged.


  1. Bano N, Hollibaugh JT (2002) Phylogenetic composition of bacterioplankton assemblages from the Arctic Ocean. Appl Environ Microbiol 68:505–518PubMedCrossRefGoogle Scholar
  2. Bano N, Ruffin S, Ransom B, Hollibaugh JT (2004) Phylogenetic composition of Arctic Ocean archaeal assemblages and comparison with Antarctic assemblages. Appl Environ Microbiol 70:781–789PubMedCrossRefGoogle Scholar
  3. Brinkmeyer R, Knittel K, Jürgens J, Weyland H, Amann R, Helmke E (2003) Diversity and structure of bacterial communities in Arctic versus Antarctic pack ice. Appl Environ Microbiol 69:6610–6619PubMedCrossRefGoogle Scholar
  4. Britschgi TB, Giovannoni SJ (1991) Phylogenetic analysis of a natural marine bacterioplanktonpopulation by ribosomal-RNA gene cloning and sequencing. Appl Environ Microbiol 57:1707–1713PubMedGoogle Scholar
  5. Brown MV, Philip GK, Bunge JA, Smith MC, Bissette A, Lauro FM, Fuhrman JA, Donachie SP (2009) Microbial community structure in the North Pacific Ocean. ISME J 3:1374–1386PubMedCrossRefGoogle Scholar
  6. Carmack EC (2007) The alpha/beta ocean distinction: a perspective on freshwater fluxes, convection, nutrients and productivity in high-latitude seas. Deep Sea Res II Oceanogr 54:2578–2598CrossRefGoogle Scholar
  7. Church MJ, DeLong EF, Ducklow HW, Karner MB, Preston CM, Karl DM (2003) Abundance and distribution of planktonic Archaea and Bacteria in the waters west of the Antarctic Peninsula. Limnol Oceanogr 48:1893–1902CrossRefGoogle Scholar
  8. Collins RE, Rocap G, Deming JW (2010) Persistence of bacterial and archaeal communities in sea ice through an Arctic winter. Environ Microbiol 12:1828–1841PubMedCrossRefGoogle Scholar
  9. Cottrell MT, Kirchman DL (2009) Photoheterotrophic microbes in the Arctic Ocean in summer and winter. Appl Environ Microbiol 75:4958–4966PubMedCrossRefGoogle Scholar
  10. Delong EF (1992) Archaea in coastal marine environments. Proc Natl Acad Sci USA 89:5685–5689PubMedCrossRefGoogle Scholar
  11. DeLong EE (2005) Microbial community genomics in the ocean. Nat Rev Microbiol 3:459–469PubMedCrossRefGoogle Scholar
  12. Diez B, Pedròs-Aliò C, Marsh TL, Massana R (2001) Application of denaturing gradient gel electrophoresis (DGGE) to study the diversity of marine picoeukaryotic assemblages and comparison of DGGE with other molecular techniques. Appl Environ Microbiol 67:2942–2951PubMedCrossRefGoogle Scholar
  13. Doolittle DF, Li WKW, Wood AM (2008) Wintertime abundance of picoplankton in the Atlantic sector of the Southern Ocean. Nova Hedwig 133:147–160Google Scholar
  14. Elifantz H, Dittell AI, Cottrell MT, Kirchman DL (2007) Dissolved organic matter assimilation by heterotrophic bacterial groups in the western Arctic Ocean. Aquat Microb Ecol 50:39–49CrossRefGoogle Scholar
  15. Epstein S, Lopez-Garcia P (2008) “Missing” protists: a molecular prospective. Biodivers Conserv 17:261–276CrossRefGoogle Scholar
  16. Francis CA, Roberts KJ, Berman JM, Santoro AE, Oakley BB (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci USA 102:14683–14688PubMedCrossRefGoogle Scholar
  17. Fuhrman JA, McCallum K, Davis AA (1992) Novel major archaebacterial group from marine plankton. Nature 356:148–149PubMedCrossRefGoogle Scholar
  18. Fuhrman JA, Steele JA, Hewson I, Schwalbach MS, Brown MV, Green JL, Brown JH (2008) A latitudinal diversity gradient in planktonic marine bacteria. Proc Natl Acad Sci USA 105:7774–7778PubMedCrossRefGoogle Scholar
  19. Galand PE, Lovejoy C, Pouliot J, Garneau ME, Vincent WF (2008a) Microbial community diversity and heterotrophic production in a coastal Arctic ecosystem: a stamukhi lake and its source waters. Limnol Oceanogr 53:813–823CrossRefGoogle Scholar
  20. Galand PE, Lovejoy C, Pouliot J, Vincent WF (2008b) Heterogeneous archaeal communities in the particle-rich environment of an arctic shelf ecosystem. J Mar Syst 75:185–197Google Scholar
  21. Galand PE, Casamayor EO, Kirchman DL, Lovejoy C (2009a) Ecology of the rare microbial biosphere of the Arctic Ocean. Proc Natl Acad Sci USA 106:22427–22432PubMedCrossRefGoogle Scholar
  22. Galand PE, Casamayor EO, Kirchman DL, Potvin M, Lovejoy C (2009b) Unique archaeal assemblages in the Arctic Ocean unveiled by massively parallel tag sequencing. ISME J 3:860–869PubMedCrossRefGoogle Scholar
  23. Galand PE, Lovejoy C, Hamilton AK, Ingram RG, Pedneault E, Carmack EC (2009c) Archaeal diversity and a gene for ammonia oxidation are coupled to oceanic circulation. Environ Microbiol 11:971–980PubMedCrossRefGoogle Scholar
  24. Galand PE, Potvin M, Casamayor EO, Lovejoy C (2010) Hydrography shapes bacterial biogeography of the deep Arctic Ocean. ISME J 4:564–576PubMedCrossRefGoogle Scholar
  25. Gilbert JA, Field D, Swift P, Newbold L, Oliver A, Smyth T, Somerfield PJ, Huse S, Joint I (2009) The seasonal structure of microbial communities in the Western English Channel. Environ Microbiol 11:3132–3139PubMedCrossRefGoogle Scholar
  26. Gordon DA, Giovannoni SF (1996) Detection of stratified microbial populations related to Chlorobium and Fibrobacter species in the Atlantic and Pacific Oceans. Appl Environ Microbiol 62:1171–1177PubMedGoogle Scholar
  27. Hamilton AK, Lovejoy C, Galand PE, Ingram RG (2008) Water masses and biogeography of picoeukaryote assemblages in a cold hydrographically complex system. Limnol Oceanogr 53:922–935CrossRefGoogle Scholar
  28. Hewson I, Steele JA, Capone DG, Fuhrman JA (2006) Remarkable heterogeneity in meso- and bathypelagic bacterioplankton assemblage composition. Limnol Oceanogr 51:1274–1283CrossRefGoogle Scholar
  29. Hobbie JE, Daley RJ, Jasper S (1977) Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl Environ Microbiol 33:1225–1228PubMedGoogle Scholar
  30. Hollibaugh JT, Bano N, Ducklow HW (2002) Widespread distribution in polar oceans of a 16S rRNA gene sequence with affinity to Nitrosospira-like ammonia-oxidizing bacteria. Appl Environ Microbiol 68:1478–1484PubMedCrossRefGoogle Scholar
  31. Kalanetra KM, Bano N, Hollibaugh JT (2009) Ammonia-oxidizing Archaea in the Arctic Ocean and Antarctic coastal waters. Environ Microbiol 11:2434–2445PubMedCrossRefGoogle Scholar
  32. Kellogg CTE, Deming JW (2009) Comparison of free-living, suspended particle, and aggregate-associated bacterial and archaeal communities in the Laptev Sea. Aquat Microb Ecol 57:1–18CrossRefGoogle Scholar
  33. Kirchman DL, Cottrell MT, Lovejoy C (2010) The structure of bacterial communities in the western Arctic Ocean as revealed by pyrosequencing of 16S rRNA genes. Environ Microbiol 12:1132–1143PubMedCrossRefGoogle Scholar
  34. Lee SH, Whitledge TR (2005) Primary and new production in the deep Canada Basin during summer 2002. Polar Biol 28:190–197CrossRefGoogle Scholar
  35. Lopez-Garcia P, Rodriguez-Valera F, Pedròs-Aliò C, Moreira D (2001) Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409:603–607PubMedCrossRefGoogle Scholar
  36. Lovejoy C, Massana R, Pedròs-Aliò C (2006) Diversity and distribution of marine microbial eukaryotes in the Arctic Ocean and adjacent seas. Appl Environ Microbiol 2:3085–3095CrossRefGoogle Scholar
  37. Lovejoy C, Vincent WF, Bonilla S, Roy S, Martineau MJ, Terrado R, Potvin M, Massana R, Pedròs-Aliò C (2007) Distribution, phylogeny, and growth of cold-adapted picoprasinophytes in arctic seas. J Phycol 43:78–89CrossRefGoogle Scholar
  38. Lucas LV, Thompson JK, Brown LR (2009) Why are diverse relationships observed between phytoplankton biomass and transport time? Limnol Oceanogr 54:381–390CrossRefGoogle Scholar
  39. Luo W, Li HR, Cai MH, He JF (2009) Diversity of microbial eukaryotes in Kongsfjorden, Svalbard. Hydrobiologia 636:233–248CrossRefGoogle Scholar
  40. Malmstrom RR, Straza TRA, Cottrell MT, Kirchman DL (2007) Diversity, abundance, and biomass production of bacterial groups in the western Arctic Ocean. Aquat Microb Ecol 47:45–55CrossRefGoogle Scholar
  41. Massana R, Terrado R, Forn I, Lovejoy C, Pedròs-Aliò C (2006) Distribution and abundance of uncultured heterotrophic flagellates in the world oceans. Environ Microbiol 8:1515–1522PubMedCrossRefGoogle Scholar
  42. Moon-van der Staay SY, De Wachter R, Vaulot D (2001) Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature 409:607–610PubMedCrossRefGoogle Scholar
  43. Murray AE, Preston CM, Massana R, Taylor LT, Blakis A, Wu K, DeLong EF (1998) Seasonal and spatial variability of bacterial and archaeal assemblages in the coastal waters near Anvers Island, Antarctica. Appl Environ Microbiol 64:2585–2595PubMedGoogle Scholar
  44. Not F, Valentin K, Romari K, Lovejoy C, Massana R, Töbe K, Vaulot D, Medlin L (2007) Picobiliphytes: a marine picoplanktonic algal group with unknown affinities to other eukaryotes. Science 315:253–255PubMedCrossRefGoogle Scholar
  45. O’Dor RK, Fennel K, Vanden Berghe E (2009) A one ocean model of biodiversity. Deep Sea Res II Oceanogr 56:1816–1823CrossRefGoogle Scholar
  46. Parke M, Dixon PS (1964) A revised check-list of British marine algae. J Mar Biol Assoc UK 44:499–542CrossRefGoogle Scholar
  47. Patterson DJ (1999) The diversity of eukaryotes. Am Nat 154:S96–S124PubMedCrossRefGoogle Scholar
  48. Pedròs-Aliò C (2006) Marine microbial diversity: can it be determined? Trends Microbiol 14:257–263PubMedCrossRefGoogle Scholar
  49. Pommier T, Canbäck B, Riemann L, Boström KH, Simu K, Lundberg P, Tunlid A, Hagström Å (2007) Global patterns of diversity and community structure in marine bacterioplankton. Mol Ecol 16:867–880PubMedCrossRefGoogle Scholar
  50. Potvin M, Lovejoy C (2009) PCR-based diversity estimates of artificial and environmental 18S rRNA gene libraries. J Eukaryot Microbiol 56:174–181CrossRefGoogle Scholar
  51. Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S, Yooseph S, Wu DY, Eisen JA, Hoffman JM, Remington K, Beeson K, Tran B, Smith H, Baden-Tillson H, Stewart C, Thorpe J, Freeman J, Andrews-Pfannkoch C, Venter JE, Li K, Kravitz S, Heidelberg JF, Utterback T, Rogers YH, Falcon LI, Souza V, Bonilla-Rosso G, Eguiarte LE, Karl DM, Sathyendranath S, Platt T, Bermingham E, Gallardo V, Tamayo-Castillo G, Ferrari MR, Strausberg RL, Nealson K, Friedman R, Frazier M, Venter JC (2007) The Sorcerer II Global Ocean sampling expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biol 5:398–431CrossRefGoogle Scholar
  52. Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, Arrieta JM, Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci USA 103:12115–12120PubMedCrossRefGoogle Scholar
  53. Stoeck T, Behnke A, Christen R, Amaral-Zettler L, Rodriguez-Mora MJ, Chistoserdov A, Orsi W, Edgcomb VP (2009) Massively parallel tag sequencing reveals the complexity of anaerobic marine protistan communities. BMC Biol 7:72PubMedCrossRefGoogle Scholar
  54. Stoeck T, Bass D, Nebel M, Christen R, Jones MDM, Breiner H-W, Richards TA (2010) Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol Ecol 19(Suppl 1):21–31PubMedCrossRefGoogle Scholar
  55. Teira E, LeBaron P, van Aken H, Herndl GJ (2006) Distribution and activity of Bacteria and Archaea in the deep water masses of the North Atlantic. Limnol Oceanogr 51:2131–2144CrossRefGoogle Scholar
  56. Terrado R, Lovejoy C, Vincent WF (2009) Mesopelagic protists: diversity and succession in a coastal Arctic ecosystem. Aquat Microb Ecol 56:25–39CrossRefGoogle Scholar
  57. Tremblay G, Belzile C, Gosselin M, Poulin M, Roy S, Tremblay JÉ (2009) Late summer phytoplankton distribution along a 3500 km transect in Canadian Arctic waters: strong numerical dominance by picoeukaryotes. Aquat Microb Ecol 54:55–70CrossRefGoogle Scholar
  58. Vaulot D, Eikrem W, Viprey M, Moreau H (2008) The diversity of small eukaryotic phytoplankton (≤3 μm) in marine ecosystems. FEMS Microbiol Rev 32:795–820Google Scholar
  59. Waleron M, Waleron K, Vincent WF, Wilmotte A (2007) Allochthonous inputs of riverine picocyanobacteria to coastal waters in the Arctic Ocean. FEMS Microbiol Ecol 59:356–365PubMedCrossRefGoogle Scholar
  60. Walsh D, Polyakov I, Timokhov L, Carmack E (2007) Thermohaline structure and variability in the eastern Nansen Basin as seen from historical data. J Mar Res 65:685–714CrossRefGoogle Scholar
  61. Winter C, Moeseneder MM, Herndl GJ, Weinbauer MG (2008) Relationship of geographic distance, depth, temperature, and viruses with prokaryotic communities in the eastern tropical Atlantic Ocean. Microb Ecol 56:383–389PubMedCrossRefGoogle Scholar
  62. Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms—proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87:4576–4579PubMedCrossRefGoogle Scholar
  63. Yamamoto-Kawai M, McLaughlin FA, Carmack EC, Nishino S, Shimada K (2008) Freshwater budget of the Canada Basin, Arctic Ocean, from salinity, delta O-18, and nutrients. J Geophys Res Oceans 113:C01007. doi: 10.1029/2006JC003858
  64. Zhaxybayeva O, Doolittle WF, Papke RT, Gogarten JP (2009) Intertwined evolutionary histories of marine Synechococcus and Prochlorococcus marinus. Genome Biol Evol 1:325-339Google Scholar
  65. Zwirglmaier K, Jardillier L, Ostrowski M, Mazard S, Garczarek L, Vaulot D, Not F, Massana R, Ulloa O, Scanlan DJ (2008) Global phylogeography of marine Synechococcus and Prochlorococcus reveals a distinct partitioning of lineages among oceanic biomes. Environ Microbiol 10:147–161PubMedGoogle Scholar

Copyright information

© Senckenberg, Gesellschaft für Naturforschung and Springer 2010

Authors and Affiliations

  • Connie Lovejoy
    • 1
    Email author
  • Pierre E. Galand
    • 2
  • David L. Kirchman
    • 3
  1. 1.Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS) and Québec-OcéanUniversité LavalQuébecCanada
  2. 2.UPMC, Univ Paris 06 and CNRS, FRE 3350, LECOB, Observatoire OcéanologiqueBanyuls-sur-MerFrance
  3. 3.School of Marine Science and PolicyUniversity of DelawareLewesUSA

Personalised recommendations