Marine Biodiversity

, Volume 41, Issue 1, pp 13–28 | Cite as

The pan-Arctic biodiversity of marine pelagic and sea-ice unicellular eukaryotes: a first-attempt assessment

  • Michel Poulin
  • Niels Daugbjerg
  • Rolf Gradinger
  • Ludmila Ilyash
  • Tatiana Ratkova
  • Cecilie von Quillfeldt
Arctic Ocean Diversity Synthesis

Abstract

Arctic marine unicellular eukaryotes are composed of microalgae and non-autotrophic protists. These eukaryotes comprise a well-diversified group of organisms that are either adapted to live in the upper water column of coastal and oceanic regions, here defined as phytoplankton/pelagic communities, or in bottom horizons of sea ice and known as sympagic/sea-ice-associated communities. There are approximately 5,000 recognized legitimate marine phytoplankton species and an unknown number of sympagic eukaryotes. Although pelagic and sea-ice eukaryotes have been described since the exploration phase of the Arctic regions up to the early twentieth century, no synthesis regarding information from all Arctic seas have been undertaken, and no exhaustive current information provides the exact number and composition of species on a pan-Arctic scale. In a first attempt to assess the pan-Arctic diversity of pelagic and sea-ice eukaryotes, a wealth of data from various sources (e.g., scientific publications, unpublished reports, databases) were reviewed, while taxonomic data were confirmed with current nomenclature and classification. We report a total of 2,106 marine single-celled eukaryote taxa with 1,874 phytoplankton and 1,027 sympagic taxa from four grouped pan-Arctic regions, namely Alaska, Canada, Scandinavia including Greenland and the Russian Federation. Both phytoplankton and sympagic taxa were present in four of the six super-groups of eukaryotes described by Adl et al. (J Eukaryot Microbiol 52:399-451, 2005), which are Archaeplastida (chlorophytes and prasinophytes), Chromalveolata (e.g., chrysophytes, cryptophytes, diatoms, dictyochophytes, dinoflagellates and prymnesiophytes), Excavata (euglenids) and Opisthokonta (choanoflagellates). The bulk of this marine biodiversity of Arctic microorganisms consists of large cells (>20 μm) mainly due to examination at low magnification under light microscopy. Future efforts should focus enhancing our knowledge of the biological diversity of small cells (<20 μm), which represent less than 20% of our actual biodiversity assessment of pan-Arctic regions.

Keywords

Arctic Biodiversity Pelagic Sea ice Unicellular eukaryotes 

References

  1. Adl SM, Simpson AGB, Farmer MA, Andersen RA, Anderson OR, Barta JR, Bowser SS, Brugerolle G, Fensome RA, Fredericq S, James TY, Karpov S, Kugrens P, Krug J, Lane CE, Lewis LA, Lodge J, Lynn DH, Mann DG, McCourt RM, Mendoza L, Moestrup Ø, Mozley-Standridge SE, Nerad TE, Shearer CA, Smirnov AV, Spiegel FW, Taylor MFJR (2005) The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol 52:399–451PubMedCrossRefGoogle Scholar
  2. Allcock AL, Hopcroft RR, Strugnell JM, Lindsay DJ, Barnes DKA, Steinke D, Smith PJ, Bellan-Santini D, Best BD, Blake JA, Blazewicz-Paszkowycz M, Bohn J, Böttger-Schnack R, Bradford-Grieve J, Nunes Drandao S, Brandt A, de Broyer C, Bucklin A, Carr CM, D’Udekem D’Acoz C, Dauvin J-C, Ebbe B, Ferrari FD, George K, Gibson R, Grant RA, Griffiths HJ, Held C, Huettmann F, Hunt B, Hutchings PA, Janussen D, Jennings RM, Kosobokova KN, Krapp-Schickel T, Kuklinski P, Larsen K, Linse K, Markhaseva EL, Muehlenhardt-Siegel U, O’Hara T, O’Loughlin PM, Lowry J, Morrow C, Raymond B, Saiz-Salinas JI, Schiaparelli S, Schrödl M, Schwabe E, Seibel B, Siegel V, Vanreusel A, Wadley VA, Ward P, Zeidler W (2010) Bipolarity in marine invertebrates: myth or marvel. PLoS ONE (in press)Google Scholar
  3. Ambrose WG Jr, von Quillfeldt CH, Clough LM, Tilney PVR, Tucker T (2005) The sub-ice algal community in the Chukchi sea: large- and small scale patterns of abundance based on images from a remotely operated vehicle. Polar Biol 28:784–795CrossRefGoogle Scholar
  4. Archambault P, Snelgrove PVR, Fisher JAD, Gagnon J-M, Garbary DJ, Harvey M, Kenchington EL, Lesage V, Levesque M, Lovejoy C, Mackas DL, McKindsey CW, Nelson JR, Pepin P, Piché L, Poulin M (2010) From sea to sea: Canada’s three oceans of biodiversity. PLoS ONE 5(8):e12182. doi:10.1371/journal.pone.0012182 PubMedCrossRefGoogle Scholar
  5. Bérard-Therriault L, Poulin M, Bossé L (1999) Guide d’identification du phytoplankton marin de l’estuaire et du golfe Saint-Laurent incluant également certains protozoaires. Publ spéc can sci halieut aquat 128:1–387Google Scholar
  6. Booth BC, Horner RA (1997) Microalgae on the Arctic Ocean Section, 1994: species abundance and biomass. Deep Sea Res II 44:1607–1622CrossRefGoogle Scholar
  7. Cleve PT (1873) On diatoms from the Arctic Sea. Bih K Svenska Vetensk-Akad Handl 1:1–28Google Scholar
  8. Cleve PT (1883) Diatoms collected during the expedition of the Vega. Vega-Expeditionens Vetenskapliga Iakttagelser 3:455–517Google Scholar
  9. Cleve PT (1896) Diatoms from Baffins Bay and Davis Strait, collected by M.E. Nilsson. Bih K Svenska Vetensk-Akad Handl 22:1–22Google Scholar
  10. Cleve PT, Grunow A (1880) Beiträge zur Kenntniss der arctischen Diatomeen. K Svenska Vetensk-Akad Handl 17:1–121Google Scholar
  11. Comiso JC (2006) Abrupt decline in the Arctic winter sea ice cover. Geophys Res Lett 33:L18504. doi:10.1029/2006GL027341 CrossRefGoogle Scholar
  12. Comiso JC, Parkinson CL, Gersten R, Stock L (2008) Accelerated decline in the Arctic sea ice cover. Geophys Res Lett 35:L01703. doi:10.1029/2007GL031972 CrossRefGoogle Scholar
  13. Daugbjerg N (1996) Mesopedinella arctica gen. et sp. nov. (Pedinellales, Dictyochophyceae) I: fine structure of a new marine phytoflagellate from Arctic Canada. Phycologia 35:435–445CrossRefGoogle Scholar
  14. Daugbjerg N, Moestrup Ø (1993) Four new species of Pyramimonas (Prasinophyceae) from arctic Canada including a light and electron microscopic description of Pyramimonas quadrifolia sp. nov. Eur J Phycol 28:3–16CrossRefGoogle Scholar
  15. Daugbjerg N, Vørs (1994) Preliminary results from a small scale survey of marine protists from northern Basin in the vicinity of Igloolik Island June 1992. In: Research on Arctic biology. Igloolik, Northwest Territories, Canada, June 8th—July 8th 1992. HCØ Tryk, Copenhagen, pp 1–46Google Scholar
  16. Degerlund M, Eilertsen HC (2010) Main species characteristics of phytoplankton spring blooms in NE Atlantic and Arctic waters (68–80° N). Estuaries Coasts 33:242–269. doi:10.1007/s12237-009-9167-7 CrossRefGoogle Scholar
  17. Doucette GJ, Mikulski CM, Jones KL, King KL, Greenfield DI, Marin R III, Jensen S, Roman B, Elliott CT, Scholin CA (2009) Remote, subsurface detection of the algal toxin domoic acid onboard the Environmental Sample Processor: assay development and field trials. Harmful Algae 8:880–888CrossRefGoogle Scholar
  18. Druzhkov NV, Druzhkova EI, Kuznetsov LL (2001) The sea-ice algal community of seasonal pack ice in the southwestern Kara Sea in late winter. Polar Biol 24:70–72CrossRefGoogle Scholar
  19. Ehrenberg CG (1841) Einen Nachtrag zu dem Vortrage über Verbreitung und Einfluß des mikroskopischen Lebens in Süd- und Nord-Amerika. Monatsber Dtsch Akad Wiss Berlin 1841:202–207Google Scholar
  20. Ehrenberg CG (1853) Über neue Anschauungen des kleinsten nördlichen Polarlebens. Monatsber Dtsch Akad Wiss Berlin 1853:522–529Google Scholar
  21. Falkowski PG, Katz ME, Knoll AH, Quigg A, Raven JA, Schofield O, Taylor FJR (2004) The evolution of modern eukaryotic phytoplankton. Science 305:354–360PubMedCrossRefGoogle Scholar
  22. Gómez F (2005) A list of free-living dinoflagellate species in the world’s oceans. Acta Bot Croat 64:129–212Google Scholar
  23. Gosselin M, Levasseur M, Wheeler PA, Horner RA, Booth BC (1997) New measurements of phytoplankton and ice algal production in the Arctic Ocean. Deep Sea Res II 44:1623–1644CrossRefGoogle Scholar
  24. Gradinger R (1998) Life at the underside of Arctic sea-ice: biological interactions between the ice cover and the pelagic realm. Mem Soc Fauna Flora Fenn 74:53–60Google Scholar
  25. Gran HH (1897) Bacillariaceen vom Kleinen Karajakfjord. Bibl Bot 42:13–24Google Scholar
  26. Gran HH (1904) Diatomaceae from the ice-floes and plankton of the Arctic Ocean. Scientific Results of the Norwegian North Polar Expedition 4:3–74Google Scholar
  27. Grøntved J, Seidenfaden G (1938) The phytoplankton of the waters west of Greenland. Medd Grønl 82:1–380Google Scholar
  28. Grunow A (1884) Die Diatomeen von Franz Josefs-Land. Abh Math-Naturwiss Kl Akad Wiss Lit Mainz 48:53–112Google Scholar
  29. Hasle GR, Syvertsen EE, von Quillfeldt CH (1996) Fossula arctica gen. nov., spec. nov., a marine Arctic pennate diatom. Diatom Res 11:261–272Google Scholar
  30. Hegseth EN (1992) Sub-ice algal assemblages of the Barents Sea: species composition, chemical composition, and growth rates. Polar Biol 12:485–496CrossRefGoogle Scholar
  31. Hegseth EN, Sundfjord A (2008) Intrusion and blooming of Atlantic phytoplankton species in the high Arctic. J Mar Syst 74:108–119CrossRefGoogle Scholar
  32. Hoppenrath M, Elbrächter M, Drebes G (2009) Marine phytoplankton. Selected microphytoplankton species from the North Sea around Helgoland and Sylt. E. Schweizerbart’sche Verlagsbuchhandlung, StuttgartGoogle Scholar
  33. Horner RA (1985) Appendix. Algal species reported from sea ice. In: Horner RA (ed) Sea ice biota. CRC Press, Boca Raton, pp 191–203Google Scholar
  34. Horner RA (2002) A taxonomic guide to some common marine phytoplankton. Biopress, BristolGoogle Scholar
  35. Hsiao SIC (1983) A checklist of marine phytoplankton and sea ice microalgae recorded from Arctic Canada. Nova Hedwig 37:225–313Google Scholar
  36. Ikävalko J (1998) Further observations on flagellates within sea ice in northern Bothnian Bay, the Baltic Sea. Polar Biol 19:323–329CrossRefGoogle Scholar
  37. Ikävalko J (2003) Report on sea ice communities. GROWTH Project GRD2-2000-30112, ARCOP D4.2.3.1. Finnish Institute of Marine Research, HelsinkiGoogle Scholar
  38. Ikävalko J, Gradinger R (1997) Flagellates and heliozoans in the Greenland Sea ice studied alive using light microscopy. Polar Biol 17:473–481CrossRefGoogle Scholar
  39. Ikävalko J, Thomsen HA (1997) The Baltic Sea ice biota (March 1994): a study of the protistan community. Europ J Protistol 33:229–243Google Scholar
  40. Ilyash LV, Zhitina LS (2009) Comparative analysis of sea-ice diatom species composition in the seas of Russian Arctic. J Gen Biol 70:143–154 [in Russian]Google Scholar
  41. Johannessen OM, Shalina EV, Miles MW (1999) Satellite evidence for an Arctic sea ice coverage in transformation. Science 286:1937–1939PubMedCrossRefGoogle Scholar
  42. Jordan RW, Cros L, Young JR (2004) A revised classification scheme for living haptophytes. Micropaleontol 50:55–79CrossRefGoogle Scholar
  43. Krayesky DM, Meave del Castillo E, Zamudio E, Norris JN, Fredericq S (2009) Diatoms (Bacillariophyta) of the Gulf of Mexico. In: Felder DL, Camp DK (eds) Gulf of Mexico origin, waters, and biota, vol 1, Biodiversity. Texas A&M University Press, College Station, pp 155–186Google Scholar
  44. Legendre L, Martineau M-J, Therriault J-C, Demers S (1992) Chlorophyll a biomass and growth of sea-ice microalgae along a salinity gradient (southeastern Hudson Bay, Canadian Arctic). Polar Biol 12:445–453Google Scholar
  45. Li WKW, McLaughlin FA, Lovejoy C, Carmack EC (2009) Smallest algae thrive as the Arctic Ocean freshens. Science 326:539PubMedCrossRefGoogle Scholar
  46. Lovejoy C, Legendre L, Martineau M-J, Bâcle J, von Quillfeldt CH (2002) Distribution of phytoplankton and other protists in the North Water. Deep Sea Res II 49:5027–5047CrossRefGoogle Scholar
  47. Lundholm N, Hasle GR (2008) Are Fragilariopsis cylindrus and Fragilariopsis nana bipolar diatoms?—Morphological and molecular analyses of two sympatric species. Nova Hedwig 133:231–250Google Scholar
  48. Markus T, Stroeve JC, Miller J (2009) Recent changes in Arctic sea ice melt onset, freezeup, and melt season length. J Geophys Res 114:C12024. doi:10.1029/2009JC005436 CrossRefGoogle Scholar
  49. McClelland JW, Déry SJ, Peterson BJ, Holmes RM, Wood EF (2006) A pan-Arctic evaluation of changes in river discharge during the latter half of the 20th century. Geophys Res Lett 33:L06715CrossRefGoogle Scholar
  50. Medlin LK, Hasle GR (1990) Some Nitzschia and related diatom species from fast ice samples in the Arctic and Antarctic. Polar Biol 10:451–479CrossRefGoogle Scholar
  51. Medlin LK, Priddle J (1990) Polar marine diatoms. British Antarctic Survey, CambridgeGoogle Scholar
  52. Melnikov IA, Kolosova EG, Welch HE, Zhitina LS (2002) Sea ice biological communities and nutrient dynamics in the Canada Basin of the Arctic Ocean. Deep Sea Res I 49:1623–1649CrossRefGoogle Scholar
  53. Moreno JL, Licea S, Santoyo H (1996) Diatomeas del Golfo de California. Universidad Autónoma de Baja California Sur, MexicoGoogle Scholar
  54. Moritz RE, Bitz CM, Steig EJ (2002) Dynamics of recent climate change in the Arctic. Polar Sci 297:1497–1502Google Scholar
  55. Okolodkov YB (1992) Cryopelagic flora of the Chukchi, East Siberian and Laptev seas. Proc NIPR Symp Polar Biol 5:28–43Google Scholar
  56. Okolodkov YB (1993) A checklist of algal species found in the East Siberian Sea in May 1987. Polar Biol 13:7–11CrossRefGoogle Scholar
  57. Okolodkov YB, Dodge JD (1996) Biodiversity and biogeography of planktonic dinoflagellates in the Arctic Ocean. J Exp Mar Biol Ecol 202:19–27CrossRefGoogle Scholar
  58. Okolodkov YB, Gárate-Lizárraga I (2006) An annotated checklist of dinoflagellates (Dinophyceae) from the Mexican Pacific. Acta Bot Mex 74:1–154Google Scholar
  59. Østrup E (1895) Marine Diatoméer fra Østgrønland. Medd Grønl 18:397–476Google Scholar
  60. Østrup E (1897) Kyst-Diatoméer fra Grønland. Medd Grønl 15:305–362Google Scholar
  61. Pabi S, van Dijken GL, Arrigo KR (2008) Primary production in the Arctic Ocean, 1998–2006. J Geophys Res 113:C08005. doi:10.1029/2007JC004578 CrossRefGoogle Scholar
  62. Palmisano AC, Garrison DL (1993) Microorganisms in Antarctic sea ice. In: Friedmann EI (ed) Antarctic microbiology. Wiley-Liss, New York, pp 167–218Google Scholar
  63. Peterson TD, Schaefer HL, Martin JL, Kaczmarska I (1999) Chaetoceros furcillatus Bailey in the Canadian Maritimes. Bot Mar 42:253–263CrossRefGoogle Scholar
  64. Peterson BJ, Holmes RM, McClelland JW, Vörösmarty CJ, Lammers RB, Shiklomanov AI, Shiklomanov IA, Rahmstorf S (2002) Increasing river discharge to the Arctic Ocean. Science 298:2171–2174PubMedCrossRefGoogle Scholar
  65. Peterson BJ, McClelland J, Curry R, Holmes RM, Walsh JE, Aagaard K (2006) Trajectory shifts in the Arctic and subarctic freshwater cycle. Science 313:1061–1066PubMedCrossRefGoogle Scholar
  66. Poulin M (1990) Sea ice diatoms (Bacillariophyceae) of the Canadian Arctic. I. The genus Stenoneis. J Phycol 26:156–167CrossRefGoogle Scholar
  67. Poulin M (1991) Sea ice diatoms (Bacillariophyceae) of the Canadian Arctic. 2. A taxonomic, morphological and geographical study of Gyrosigma concilians. Nord J Bot 10:681–688CrossRefGoogle Scholar
  68. Poulin M (1993) Craspedopleura (Bacillariophyta), a new diatom genus of arctic sea ice assemblages. Phycologia 32:223–233CrossRefGoogle Scholar
  69. Poulin M, Cardinal A (1982) Sea ice diatoms from Manitounuk Sound, southeastern Hudson Bay (Quebec, Canada). II. Naviculaceae, genus Navicula. Can J Bot 60:2825–2845CrossRefGoogle Scholar
  70. Poulin M, Williams DM (2002) Conservation of diatom biodiversity: a perspective. In: John J (ed) Proceedings of the 15th International Diatom Symposium. ARG Gantner, Liechtenstein, pp 161–171Google Scholar
  71. Poulin M, Cardinal A, Legendre L (1983) Réponse d’une communauté de diatomées de glace à un gradient de salinité (baie d’Hudson). Mar Biol 76:191–202CrossRefGoogle Scholar
  72. Poulin M, Lundholm N, Bérard-Therriault L, Starr M, Gagnon R (2010) Morphological and phylogenetic comparisons of Neodenticula seminae (Bacillariophyta) populations between the subarctic Pacific and the Gulf of St. Lawrence. Eur J Phycol 45:127–142CrossRefGoogle Scholar
  73. Ratkova TN, Wassmann P (2005) Sea ice algae in the White and Barents seas: composition and origin. Polar Res 24:95–110CrossRefGoogle Scholar
  74. Reid PC, Johns DG, Edwards M, Starr M, Poulin M, Snoeijs P (2007) A biological consequence of reducing Arctic ice cover: arrival of the Pacific diatom Neodenticula seminae in the North Atlantic for the first time in 800 000 years. Global Change Biol 13:1910–1921CrossRefGoogle Scholar
  75. Różańska M, Gosselin M, Poulin M, Wiktor JM, Michel C (2009) Influence of environmental factors on the development of bottom ice protist communities during the winter–spring transition. Mar Ecol Prog Ser 386:43–59CrossRefGoogle Scholar
  76. Sakshaug E, Johnsen G, Kristiansen S, von Quillfeldt C, Rey F, Slagstad D, Thingstad F (2009) Phytoplankton and primary production. In: Sakshaug E, Johnsen G, Kovacs K (eds) Ecosystem Barents Sea. Tapir Academic Press, Trondheim, pp 167–208Google Scholar
  77. Scholin C, Doucette G, Jensen S, Roman B, Pargett D, Marin R III, Preston C, Jones W, Feldman J, Everlove C, Harris A, Alvarado N, Massion E, Birch J, Greenfield D, Vrijenhoek R, Mikulski C, Jones K (2009) Remote detection of marine microbes, small invertebrates, harmful algae, and biotoxins using the Environmental Sample Processor (ESP). Oceanography 22:158–167Google Scholar
  78. Scott FJ, Marchant HJ (2005) Antarctic marine protists. Australian Biological Resources Study, Canberra, Australian Antarctic Division, HobartGoogle Scholar
  79. Serreze MC, Holland MM, Stroeve J (2007) Perspectives on the Arctic’s shrinking sea-ice cover. Science 315:1533–1536PubMedCrossRefGoogle Scholar
  80. Sieburth JMcN, Smetacek V, Lenz J (1978) Pelagic ecosystem structure: Heterotrophic compartments of the plankton and their relationship to plankton size fractions. Limnol Oceanogr 23:1256–1263CrossRefGoogle Scholar
  81. Simon N, Cras A-L, Foulon E, Lemée R (2009) Diversity and evolution of marine phytoplankton. C R Biologies 332:159–170PubMedCrossRefGoogle Scholar
  82. Sournia A, Chrétiennot-Dinet M-J, Ricard M (1991) Marine phytoplankton: how many species in the world ocean? J Plankton Res 13:1093–1099CrossRefGoogle Scholar
  83. Steidinger KA, Faust MA, Hernández-Becerril DU (2009) Dinoflagellates (Dinoflagellata) of the Gulf of Mexico. In: Felder DL, Camp DK (eds) Gulf of Mexico origin, waters, and biota. Vol 1, Biodiversity. Texas A&M University Press, College Station, pp 131–154Google Scholar
  84. Tett P, Barton ED (1995) Why are there about 5000 species of phytoplankton in the sea? J Plankton Res 17:1693–1704CrossRefGoogle Scholar
  85. Thomas DN, Dieckmann GS (2010) Sea ice, 2nd edn. Wiley-Blackwell, OxfordGoogle Scholar
  86. Thomsen HA, Garrison DL, Kosman C (1997) Choanoflagellates (Acanthoecidae, Choanoflagellida) from the Weddell Sea, Antarctica, taxonomy and community structure with particular emphasis on the ice biota; with preliminary remarks on Choanoflagellates from Arctic sea ice (Northeast Water polynya, Greenland). Arch Protistenkd 148:77–114Google Scholar
  87. Throndsen J, Hasle GR, Tangen K (2007) Phytoplankton of Norwegian coastal waters. Almater Forlag AS, OsloGoogle Scholar
  88. Tremblay G, Belzile C, Gosselin M, Poulin M, Roy S, Tremblay J-É (2009) Late summer phytoplankton distribution along a 3500 km transect in Canadian Arctic waters: strong numerical dominance by picoeukaryotes. Aquat Microb Ecol 54:55–70CrossRefGoogle Scholar
  89. Tuschling K, Juterzenka KV, Okolodkov YB, Anoshkin A (2000) Composition and distribution of the pelagic and sympagic algal assemblages in the Laptev Sea during autumnal freeze-up. J Plankton Res 22:843–864CrossRefGoogle Scholar
  90. UNEP (1994) Convention on biological diversity. Text and annexes. United Nations Environment Programme, ChâtelaineGoogle Scholar
  91. Vanhöffen E (1897) Die Fauna und Flora Grönlands. In: Drygalski EV (ed) Grönland-Expedition der Gesellschaft für Erdkunde zu Berlin 1891-1893, vol 2. WH Kühl, Berlin, pp 254–320Google Scholar
  92. Villac MC, Cabral-Noronha VAP, Pinto TO (2008) The phytoplankton biodiversity of the coast of the state of São Paulo, Brazil. Biota Neotrop 8:151–173CrossRefGoogle Scholar
  93. von Quillfeldt CH (1997) Distribution of diatoms in the Northeast Water polynya, Greenland. J Mar Syst 10:211–240CrossRefGoogle Scholar
  94. von Quillfeldt CH (2000a) Common diatom species in Arctic spring blooms: their distribution and abundance. Bot Mar 43:499–516CrossRefGoogle Scholar
  95. von Quillfeldt CH (2000b) Pleurosigma tenuiforme spec. nov.: a marine Pleurosigma species with long, slender apices, occurring in arctic regions. Diatom Res 15:221–236Google Scholar
  96. von Quillfeldt CH (2001) Identification of some easily confused common diatom species in Arctic spring blooms. Bot Mar 44:375–389CrossRefGoogle Scholar
  97. von Quillfeldt CH, Ambrose WG Jr, Clough LM (2003) High number of diatom species in first-year ice from the Chukchi Sea. Polar Biol 26:806–818CrossRefGoogle Scholar
  98. von Quillfeldt CH, Hegseth EN, Johsen G, Sakshaug E, Syvertsen EE (2009) Ice algae. In: Sakshaug E, Johnsen G, Kovacs K (eds) Ecosystem Barents Sea. Tapir Academic Press, Trondheim, pp 285–302Google Scholar
  99. Vørs N (1993) Heterotrophic amoebae, flagellates and heliozoan from Arctic marine waters (North West Territories, Canada and West Greenland). Polar Biol 13:113–126CrossRefGoogle Scholar
  100. Young JR, Geisen M, Cros L, Kleijne A, Sprengel C, Probert I, Østergaard JB (2003) A guide to extant coccolithophore taxonomy. J Nannoplankton Res Spec Issue 1:1–125Google Scholar

Copyright information

© Senckenberg, Gesellschaft für Naturforschung and Springer 2010

Authors and Affiliations

  • Michel Poulin
    • 1
  • Niels Daugbjerg
    • 2
  • Rolf Gradinger
    • 3
  • Ludmila Ilyash
    • 4
  • Tatiana Ratkova
    • 5
  • Cecilie von Quillfeldt
    • 6
  1. 1.Research DivisionCanadian Museum of NatureOttawaCanada
  2. 2.Department of BiologyUniversity of CopenhagenCopenhagen KDenmark
  3. 3.School of Fisheries and Ocean SciencesUniversity of Alaska FairbanksFairbanksUSA
  4. 4.Lomonosov Moscow State UniversityMoscowRussian Federation
  5. 5.Russian Academy of Sciences, P.P. Shirshov Institute of Oceanology RASMoscowRussian Federation
  6. 6.Norwegian Polar InstituteLongyearbyenNorway

Personalised recommendations