Marine Biodiversity

, Volume 41, Issue 3, pp 353–364 | Cite as

Amphipod abundance in sediment trap samples at the long-term observatory HAUSGARTEN (Fram Strait, ∼79°N/4°E). Variability in species community patterns

  • Angelina Kraft
  • Eduard Bauerfeind
  • Eva-Maria Nöthig
Marine Biodiversity Under Change


Since 2000, sediment traps have been deployed at the HAUSGARTEN (a long-term observatory established by the Alfred-Wegener-Institute for Polar and Marine Research in 1999) in the Fram Strait, (west of Spitsbergen at a water depth of 2,500 m, located in the confluence zone of the warm saline Atlantic water and water masses of polar origin) in order to investigate seasonal and inter-annual fluctuation of particle flux and the various contribution of zooplankton swimmers. Amongst these swimmers, amphipods are regularly observed occurring in a recurrent pattern and they dominate the biomass. Thus, we present data on amphipods regarding their seasonal and regional distribution pattern throughout the period 2000–2007. The most frequently observed amphipod species are Themisto libellula, T. abyssorum and T. compressa. While Themisto libellula is considered a true Arctic species associated to polar water masses, the boreal-Atlantic species Themisto abyssorum is imported into the Arctic by Atlantic water. A third species, Themisto compressa, occurred in 2004 and has been continually observed in the samples since then. The latter species has its main distribution in the warm regions of the North Atlantic and its occurrence in the Fram Strait points to the increased influence of warm Atlantic water masses. During 2000–2007, the amphipod composition in the samples has changed in favor of T. abyssorum and T. compressa. These shifts could suggest a northward movement of Atlantic species in the seasonally ice-covered area, a region of the ocean anticipated to react very sensitively to global warming.


Amphipoda Themisto Sediment trap Swimmers Atlantification Arctic Ocean 


  1. Arndt CE, Pavlova O (2005) Origin and fate of ice fauna in the Fram Strait and Svalbard area. Mar Ecol Prog Ser 301:55–66CrossRefGoogle Scholar
  2. Auel H, Harjes M, Da Rocha R, Stübing D, Hagen W (2002) Lipid biomarkers indicate different ecological niches and trophic relationships of the Arctic hyperiid amphipods Themisto abyssorum and T. libellula. Polar Biol 25:374–383Google Scholar
  3. Barnard JL, Karaman GS (1991) The families and genera of marine gammaridean amphipods (except marine gammaroids). Records of the Australian Museum, Supplement 13Google Scholar
  4. Bauerfeind E, Nöthig E-M, Beszczynska A, Fahl K, Kaleschke L, Kreker K, Klages M, Soltwedel T, Lorenzen C, Wegner J (2009) Particle sedimentation patterns in the eastern Fram Strait during 2000–2005: results from the Arctic long-term observatory HAUSGARTEN. Deep Sea Res I 56:1471–1487CrossRefGoogle Scholar
  5. Berge J, Cottier F, Last KS, Varpe O, Leu E, Soreide J, Eiane K, Falk-Petersen S, Willis K, Nygard H, Vogedes D, Griffiths C, Johnson G, Lorentzen D, Brierley AS (2009) Diel vertical migration of Arctic zooplankton during the polar night. Biol Lett 5:69–72PubMedCrossRefGoogle Scholar
  6. Blachowiak-Samolyk K, Kwasniewski S, Dmoch K, Hop H, Falk-Petersen S (2007) Trophic structure of zooplankton in the Fram Strait in spring and autumn 2003. Deep Sea Res II 54:2716–2728CrossRefGoogle Scholar
  7. Bloesch J, Burns NM (1980) A critical review of sedimentation trap technique. Schweiz Z Hydrol 42(1):15–55CrossRefGoogle Scholar
  8. Bowman TE (1960) The pelagic amphipod genus Parathemisto (Hyperiidea: Hyperiidae) in the North Pacific and adjacent Arctic Ocean. Proc US Acad Sci USA 112:343–392Google Scholar
  9. Buchholz F, Buchholz C, Węsławski JM (2010) Ten years after: krill as indicator of changes in the macro-zooplankton communities of two Arctic fjords. Polar Biol 33:101–113CrossRefGoogle Scholar
  10. Buesseler KO, Antia AN, Chen M, Fowler SW, Gardner WD, Gustafsson O, Harada K, Michaels AF, Rutgers van der Loeff M, Sarin M, Steinberg DK, Trull T (2007) An assessment of the use of sediment traps for estimating upper ocean particle fluxes. J Mar Res 65:345–416Google Scholar
  11. Clarke KR, Gorley RN (2006) PRIMER v6: user manual/tutorial. PRIMER-E, PlymouthGoogle Scholar
  12. Clarke KR, Warwick RM (2001) Change in marine communities: an approach to statistical analysis and interpretation, 2nd edn. PRIMER-E, PlymouthGoogle Scholar
  13. Dalpadado P (2002) Inter-specific variations in distribution, abundance and possible life-cycle patterns of Themisto spp. (Amphipoda) in the Barents Sea. Polar Biol 25:656–666Google Scholar
  14. Dalpadado P, Borkner N, Bogstad B, Mehl S (2001) Distribution of Themisto (Amphipoda) spp. in the Barents Sea and predator-prey interactions. ICES J Mar Sci 58:876–895CrossRefGoogle Scholar
  15. Dalpadado P, Yamaguchi A, Ellertsen B, Johannessen S (2008) Trophic interactions of macro-zooplankton (krill and amphipods) in the Marginal Ice Zone of the Barents Sea. Deep Sea Res Pt II 55:2266–2274CrossRefGoogle Scholar
  16. Dunbar MJ (1957) The determinats of production in the northern seas: a study of the biology of Themisto libellula (Mandt). Can J Zool 35:797–819CrossRefGoogle Scholar
  17. Dunbar MJ (1964) Serial atlas of the marine environment. Folio 6. Euphausiids and pelagic amphipods. American Geographical Society, New YorkGoogle Scholar
  18. Grainger EH (1989) Vertical distribution of zooplankton in the central Arctic Ocean. In: Rey L, Alexander V (eds) Proceedings of the Sixth Conference of the Comité Arctique International 13-15 May 1985. Brill, Leiden, pp 48–60Google Scholar
  19. Gronik S, Hopkins CCE (1984) Ecological investigations of the zooplankton community of Balsfjorden, northern Norway: Generation cycle, seasonal vertical distribution, and seasonal variations in body weight and carbon and nitrogen content of the copepod Metridia longa (Lubbock). J Exp Mar Biol Ecol 80:93–107CrossRefGoogle Scholar
  20. Harris R, Wiebe P, Lenz J, Skjoldal R-H, Huntley M (eds) (2000) ICES Zooplankton methodology manual. Academic, LondonGoogle Scholar
  21. Harvey M, Galbraith PS, Descroix A (2009) Vertical distribution and diel migration of macrozooplankton in the St. Lawrence marine system (Canada) in relation with the cold intermediate layer thermal properties. Prog Oceanogr 80:1–21CrossRefGoogle Scholar
  22. Hays GC, Richardson AJ, Robinson C (2005) Climate change and marine plankton. Trends Ecol Evol 20:337–344PubMedCrossRefGoogle Scholar
  23. Hop H, Falk-Petersen S, Svendsen H, Kwasniewski S, Pavlov V, Pavlova O, Søreide JE (2006) Physical and biological characteristics of the pelagic system across Fram Strait to Kongsfjorden. Prog Oceanogr 71:182–231CrossRefGoogle Scholar
  24. Karl DM, Knauer GA (1989) Swimmers: a recapitulation of the problem and a potential solution. Oceanogr 2:32–35Google Scholar
  25. Knauer GA, Martin JH, Bruland KW (1979) Fluxes of particulate carbon, nitrogen and phosphorus in the upper water column of the northeast Pacific. Deep Sea Res 26:97–108CrossRefGoogle Scholar
  26. Koszteyn J, Timofeev S, Węsławski JM (1995) Size structure of Themisto abyssorum (Boeck) and Themisto libellula (Mandt) populations in European Arctic Seas. Polar Biol 15:85–92CrossRefGoogle Scholar
  27. Kremling K, Lentz U, Zeitzschel B, Schultz-Bull DE, Duinker JC (1996) New type of time-series sediment trap for the reliable collection of inorganic and organic trace chemical substances. Rev Sci Instrum 67:4360–4363CrossRefGoogle Scholar
  28. Larsson U, Blomqvist S, Abrahamsson B (1986) A new sediment trap system. Mar Ecol Prog Ser 31:205–207CrossRefGoogle Scholar
  29. Laval P (1980) Hyperiid amphipods as crustacean parasitoids associated with gelatinous zooplankton. Oceanogr Mar Biol Annu Rev 18:11–56Google Scholar
  30. Lee C, Wakeham SG, Hedges JI (1988) The measurement of oceanic particle flux – are “swimmers” a problem? Oceanogr 1(2):34–36Google Scholar
  31. Lee C, Hedges JI, Wakeham SG, Zhu N (1992) Effectiveness of various treatments in retarding microbial activity in sediment trap material and their effects on the collection of swimmers. Limnol Oceanogr 37(1):117–130CrossRefGoogle Scholar
  32. Macnaughton MO, Thormar J, Berge J (2007) Sympagic amphipods in the Arctic pack ice: redescriptions of Eusirus holmii Hansen, 1887 and Pleusymtes karstensi (Barnard, 1959). Polar Biol 30:1013–1025CrossRefGoogle Scholar
  33. Makabe R, Hattori H, Sampei M, Ota Y, Fukuchi M, Fortier L, Sasaki H (2010) Regional and seasonal variability of zooplankton collected using sediment traps in the southeastern Beaufort Sea, Canadian Arctic. Polar Biol 33:257–270CrossRefGoogle Scholar
  34. Marion A, Harvey M, Chabot D, Brêthes J-C (2008) Feeding ecology and predation impact of the recently established amphipod, Themisto libellula, in the St. Lawrence marine system, Canada. Mar Ecol Prog Ser 373:53–70CrossRefGoogle Scholar
  35. Michaels AF, Silver MW, Gowing MM, Knauer GA (1990) Cryptic zooplankton “swimmers” in upper ocean sediment traps. Deep-Sea Res 37:1285–1296CrossRefGoogle Scholar
  36. Peterson ML, Hernes PJ, Thoreson DS, Hedges IH (1993) Field evaluation of a valved sediment trap. Limnol Oceanogr 38(8):1741–1761CrossRefGoogle Scholar
  37. Piechura J (2004) The circulation of the Nordic Seas. In: Skreslet S (ed) Jan Mayen Island in Scientific Focus. Kluwer, Netherlands, pp 91–99Google Scholar
  38. Piechura J, Walczowski W (2009) Warming of the West Spitsbergen Current and sea ice north of Svalbard. Oceanologia 51(2):147–164Google Scholar
  39. Poltermann M (1997) Biologische und ökologische Untersuchungen zur kryopelagischen Amphipodenfauna des arktischen Meereises. Ber Polarforsch 255:1–170Google Scholar
  40. Poltermann M (2001) Arctic sea ice as feeding ground for amphipods – food sources and strategies. Polar Biol 24:89–96CrossRefGoogle Scholar
  41. Poltermann M, Hop H, Falk-Petersen S (2000) Life under Arctic sea ice – reproduction strategies of two sympagic (ice-associated) amphipod species, Gammarus wilkitzkii and Apherusa glacialis. Mar Biol 136:913–920CrossRefGoogle Scholar
  42. Quadfasel D, Gascard J-C, Kolermann K-P (1987) Large-scale oceanography in Fram Strait during the 1984 marginal ice zone experiment. J Geophys Res 92:6719–6728CrossRefGoogle Scholar
  43. Richardson AJ (2008) In hot water: zooplankton and climate change. ICES J Mar Sci 65:279–295CrossRefGoogle Scholar
  44. Sampei M, Sasaki H, Hattori H, Forest A, Fortier L (2009) Significant contribution of passively sinking copepods to the downward export flux in Arctic waters. Limnol Oceanogr 54(6):1894–1900CrossRefGoogle Scholar
  45. Schauer U, Beszczynska-Möller A, Walczowski W, Fahrbach E, Piechura J, Hansen E (2008) Variation of Measured Heat Flow Through the Fram Strait Between 1997 and 2006. In: Dickson RR, Meincke J, Rhines P (eds) Arctic–Subarctic Ocean Fluxes. Springer, Netherlands, pp 65–85CrossRefGoogle Scholar
  46. Schneppenheim R, Weigmann-Haass R (1986) Morphological and electrophoretic studies of the genus Themisto (Amphipoda: Hyperiidea) from the South and North Atlantic. Polar Biol 6:215–225CrossRefGoogle Scholar
  47. Seiler D, Brandt A (1997) Seasonal occurrence of planktic Crustacea in sediment trap samples at three depth horizons in the Greenland Sea. Polar Biol 17:337–349CrossRefGoogle Scholar
  48. Silver MW, Gowing MM (1991) The “Particle” Flux: origins and biological components. Prog Oceanogr 26:75–113CrossRefGoogle Scholar
  49. Tencati JR (1970) Amphipods of the central Arctic. In: Leung, YM, Kobayashi, HA (eds) Taxonomic guides to Arctic zooplankton (I), Tech Rep 2. University of Southern California, Department of Biological Sciences, pp 3-37Google Scholar
  50. U.S. Global Ocean Flux Study (1989) Sediment trap technology and sampling. US GOFS Planning Report No. 10Google Scholar
  51. Vallee BL, Ulmer DD (1972) Biochemical effects of Mercury, Cadmium and Lead. Annu Rev Biochem 41:91–128PubMedCrossRefGoogle Scholar
  52. Vermeij GJ, Roopnarine PD (2008) The coming arctic invasion. Science 321:780–781PubMedCrossRefGoogle Scholar
  53. Vinogradov ME (1999) Deep-sea near-bottom swarms of pelagic amphipods Themisto: observations from submersibles. Sarsia 84:465–467Google Scholar
  54. Vinogradov ME, Volkov AF, Semenova TN (1996) Hyperiid amphipods (Amphipoda, Hyperidea) of the world oceans. Science Publishers, Lebanon, USAGoogle Scholar
  55. Wakeham SG, Hedges JI, Lee C, Pease TK (1993) Effects of poisons and preservatives on the composition of organic matter in a sediment trap experiment. J Mar Res 51:669–696CrossRefGoogle Scholar
  56. Walkusz W, Storemark K, Skau T, Gannefors C, Lundberg M (2003) Zooplankton community structure; a comparison of fjords, open water and ice stations in the Svalbard area. Pol Polar Res 24:149–165Google Scholar
  57. Wallace MI, Cottier FR, Berge J, Tarling GA, Griffiths C, Brierley AS (2010) Comparison of zooplankton vertical migration in an ice-free and seasonally ice-covered Arctic fjord: an insight into the influence of sea ice cover on zooplankton behavior. Limnol Oceanogr 55:831–845CrossRefGoogle Scholar
  58. Wassmann P (2008) Impacts of global warming on arctic pelagic ecosystems and processes. In: Durate CM (ed) Impacts of global warming on polar ecosystems. Fundación BBVA, Spain, pp 111–138Google Scholar
  59. Weigmann-Haass R (1997) Verbreitung von Makrozooplankton in der Grönlandsee im Spätherbst 1988 (Crustacea: Ostracoda, Hyperiidea [Amphipoda], Euphausiacea). Helgol Meeresunters 51:69–82CrossRefGoogle Scholar
  60. Wencki K (2000) Interannual variability in the occurrence of Themisto (Amphipoda) in the north Norwegian Sea. Pol Polar Res 21:143–152Google Scholar
  61. Werner I, Auel H, Garrity C, Hagen W (1999) Pelagic occurrence of the sympagic amphipod Gammarus wilkitzkii in ice-free waters of the Greenland Sea - dead end or part of life-cycle? Polar Biol 22:56–60CrossRefGoogle Scholar
  62. Węsławski JM, Legeżyńska J (2002) Life cycles of some arctic amphipods. Pol Polar Res 23(3–4):253–264Google Scholar
  63. Węsławski JM, Kwaśniewski S, Stempniewicz L, Błachowiak-Samołyk K (2006) Biodiversity and energy transfer to top trophic levels in two contrasting Arctic fjords. Polish Polar Res 27:259–278Google Scholar
  64. Williams R, Robins D (1981) Seasonal variability in abundance and vertical distribution of Parathemisto gaudichaudi (Amphipoda: Hyperiidea) in the North East Atlantic Ocean. Mar Ecol Prog Ser 4:289–298CrossRefGoogle Scholar
  65. Willis KJ, Cottier FR, Kwaśniewski S (2008) Impact of warm water advection on the winter zooplankton community in an Arctic fjord. Polar Biol 31:475–481CrossRefGoogle Scholar
  66. Wing BL (1976) Ecology of Parathemisto libellula and P. pacifica (Amphipoda: Hyperiidea) in Alaskan waters. Northwest Fisheries Center Processed Report, SeattleGoogle Scholar

Copyright information

© Senckenberg, Gesellschaft für Naturforschung and Springer 2010

Authors and Affiliations

  • Angelina Kraft
    • 1
    • 2
  • Eduard Bauerfeind
    • 1
  • Eva-Maria Nöthig
    • 1
  1. 1.Alfred-Wegener-Institute for Polar and Marine ResearchBremerhavenGermany
  2. 2.University of Applied Sciences BremenBremenGermany

Personalised recommendations